

Bharath Ramsundar, Peter Eastman,
Patrick Walters, and Vijay Pande

Deep Learning for the Life Sciences
Applying Deep Learning to Genomics,

Microscopy, Drug Discovery, and More

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-03983-9

[LSI]

Deep Learning for the Life Sciences
by Bharath Ramsundar, Peter Eastman, Patrick Walters, and Vijay Pande

Copyright © 2019 Bharath Ramsundar, Peter Eastman, Patrick Walters, and Vijay Pande. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Development Editor: Nicole Tache
Acquisitions Editor: Mike Loukides
Production Editor: Katherine Tozer
Copyeditor: Rachel Head
Proofreader: Zachary Corleissen

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2019: First Edition

Revision History for the First Edition
2019-03-27: First Release

See http://bit.ly/deep-learning-life-science for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Deep Learning for the Life Sciences, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://bit.ly/deep-learning-life-science

Table of Contents

Preface. vii

1. Why Life Science?. 1
Why Deep Learning? 1
Contemporary Life Science Is About Data 2
What Will You Learn? 3

2. Introduction to Deep Learning. 7
Linear Models 8
Multilayer Perceptrons 10
Training Models 13
Validation 15
Regularization 15
Hyperparameter Optimization 17
Other Types of Models 18

Convolutional Neural Networks 18
Recurrent Neural Networks 19

Further Reading 21

3. Machine Learning with DeepChem. 23
DeepChem Datasets 24
Training a Model to Predict Toxicity of Molecules 25
Case Study: Training an MNIST Model 32

The MNIST Digit Recognition Dataset 33
A Convolutional Architecture for MNIST 34

Conclusion 39

iii

4. Machine Learning for Molecules. 41
What Is a Molecule? 42

What Are Molecular Bonds? 44
Molecular Graphs 46
Molecular Conformations 47
Chirality of Molecules 48

Featurizing a Molecule 49
SMILES Strings and RDKit 49
Extended-Connectivity Fingerprints 50
Molecular Descriptors 51

Graph Convolutions 51
Training a Model to Predict Solubility 52
MoleculeNet 54

SMARTS Strings 54
Conclusion 57

5. Biophysical Machine Learning. 59
Protein Structures 61

Protein Sequences 63
A Short Primer on Protein Binding 66

Biophysical Featurizations 67
Grid Featurization 68
Atomic Featurization 73

The PDBBind Case Study 73
PDBBind Dataset 73
Featurizing the PDBBind Dataset 77

Conclusion 81

6. Deep Learning for Genomics. 85
DNA, RNA, and Proteins 85
And Now for the Real World 87
Transcription Factor Binding 90

A Convolutional Model for TF Binding 90
Chromatin Accessibility 93
RNA Interference 96
Conclusion 99

7. Machine Learning for Microscopy. 101
A Brief Introduction to Microscopy 103

Modern Optical Microscopy 104
The Diffraction Limit 107

Electron and Atomic Force Microscopy 108

iv | Table of Contents

Super-Resolution Microscopy 110
Deep Learning and the Diffraction Limit? 112

Preparing Biological Samples for Microscopy 112
Staining 112
Sample Fixation 113
Sectioning Samples 114
Fluorescence Microscopy 115
Sample Preparation Artifacts 117

Deep Learning Applications 118
Cell Counting 118
Cell Segmentation 121
Computational Assays 126

Conclusion 126

8. Deep Learning for Medicine. 129
Computer-Aided Diagnostics 129
Probabilistic Diagnoses with Bayesian Networks 131
Electronic Health Record Data 132

The Dangers of Large Patient EHR Databases? 135
Deep Radiology 136

X-Ray Scans and CT Scans 138
Histology 141
MRI Scans 142

Learning Models as Therapeutics 143
Diabetic Retinopathy 144
Conclusion 147

Ethical Considerations 147
Job Losses 148
Summary 149

9. Generative Models. 151
Variational Autoencoders 151
Generative Adversarial Networks 153
Applications of Generative Models in the Life Sciences 154

Generating New Ideas for Lead Compounds 155
Protein Design 155
A Tool for Scientific Discovery 156
The Future of Generative Modeling 156

Working with Generative Models 157
Analyzing the Generative Model’s Output 158

Conclusion 161

Table of Contents | v

10. Interpretation of Deep Models. 165
Explaining Predictions 165
Optimizing Inputs 169
Predicting Uncertainty 172
Interpretability, Explainability, and Real-World Consequences 176
Conclusion 177

11. A Virtual Screening Workflow Example. 179
Preparing a Dataset for Predictive Modeling 180
Training a Predictive Model 186
Preparing a Dataset for Model Prediction 191
Applying a Predictive Model 195
Conclusion 202

12. Prospects and Perspectives. 203
Medical Diagnosis 203
Personalized Medicine 205
Pharmaceutical Development 206
Biology Research 208
Conclusion 209

Index. 211

vi | Table of Contents

Preface

In recent years, life science and data science have converged. Advances in robotics
and automation have enabled chemists and biologists to generate enormous amounts
of data. Scientists today are capable of generating more data in a day than their prede‐
cessors 20 years ago could have generated in an entire career. This ability to rapidly
generate data has also created a number of new scientific challenges. We are no longer
in an era where data can be processed by loading it into a spreadsheet and making a
couple of graphs. In order to distill scientific knowledge from these datasets, we must
be able to identify and extract nonobvious relationships.

One technique that has emerged over the last few years as a powerful tool for identi‐
fying patterns and relationships in data is deep learning, a class of algorithms that
have revolutionized approaches to problems such as image analysis, language transla‐
tion, and speech recognition. Deep learning algorithms excel at identifying and
exploiting patterns in large datasets. For these reasons, deep learning has broad appli‐
cations across life science disciplines. This book provides an overview of how deep
learning has been applied in a number of areas including genetics, drug discovery,
and medical diagnosis. Many of the examples we describe are accompanied by code
examples that provide a practical introduction to the methods and give the reader a
starting point for future research and exploration.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

vii

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/deepchem/DeepLearningLifeSciences.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Deep Learning for the Life Sciences by
Bharath Ramsundar, Peter Eastman, Patrick Walters, and Vijay Pande (O’Reilly).
Copyright 2019 Bharath Ramsundar, Karl Leswing, Peter Eastman, and Vijay Pande,
978-1-492-03983-9.”

viii | Preface

https://github.com/deepchem/DeepLearningLifeSciences

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly has provided technology and
business training, knowledge, and insight to help companies
succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/deep-lrng-for-life-science.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | ix

mailto:permissions@oreilly.com
http://oreilly.com
http://www.oreilly.com
http://bit.ly/deep-lrng-for-life-science
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank Nicole Tache, our editor at O’Reilly, as well as the tech review‐
ers and beta reviewers for their valuable contributions to the book. In addtion, we
would like to thank Karl Leswing and Zhenqin (Michael) Wu for their contributions
to the code and Johnny Israeli for valuable advice on the genomics chapter.

Bharath would like to thank his family for their support and encouragement during
many long weekends and nights working on this book.

Peter would like to thank his wife for her constant support, as well as the many col‐
leagues from whom he has learned so much about machine learning.

Pat would like to thank his wife Andrea, and his daughters Alee and Maddy, for their
love and support. He would also like to acknowledge past and present colleagues at
Vertex Pharmaceuticals and Relay Therapeutics, from whom he has learned so much.

Finally, we want to thank the DeepChem open source community for their encour‐
agement and support throughout this project.

x | Preface

CHAPTER 1

Why Life Science?

While there are many directions that those with a technical inclination and a passion
for data can pursue, few areas can match the fundamental impact of biomedical
research. The advent of modern medicine has fundamentally changed the nature of
human existence. Over the last 20 years, we have seen innovations that have trans‐
formed the lives of countless individuals. When it first appeared in 1981, HIV/AIDS
was a largely fatal disease. Continued development of antiretroviral therapies has dra‐
matically extended the life expectancy for patients in the developed world. Other dis‐
eases, such as hepatitis C, which was considered largely untreatable a decade ago, can
now be cured. Advances in genetics are enabling the identification and, hopefully
soon, the treatment of a wide array of diseases. Innovations in diagnostics and instru‐
mentation have enabled physicians to specifically identify and target disease in the
human body. Many of these breakthroughs have benefited from and will continue to
be advanced by computational methods.

Why Deep Learning?
Machine learning algorithms are now a key component of everything from online
shopping to social media. Teams of computer scientists are developing algorithms
that enable digital assistants such as the Amazon Echo or Google Home to under‐
stand speech. Advances in machine learning have enabled routine on-the-fly transla‐
tion of web pages between spoken languages. In addition to machine learning’s
impact on everyday life, it has impacted many areas of the physical and life sciences.
Algorithms are being applied to everything from the detection of new galaxies from
telescope images to the classification of subatomic interactions at the Large Hadron
Collider.

One of the drivers of these technological advances has been the development of a
class of machine learning methods known as deep neural networks. While the tech‐

1

nological underpinnings of artificial neural networks were developed in the 1950s
and refined in the 1980s, the true power of the technique wasn’t fully realized until
advances in computer hardware became available over the last 10 years. We will pro‐
vide a more complete overview of deep neural networks in the next chapter, but it is
important to acknowledge some of the advances that have occurred through the
application of deep learning:

• Many of the developments in speech recognition that have become ubiquitous in
cell phones, computers, televisions, and other internet-connected devices have
been driven by deep learning.

• Image recognition is a key component of self-driving cars, internet search, and
other applications. Many of the same developments in deep learning that drove
consumer applications are now being used in biomedical research, for example,
to classify tumor cells into different types.

• Recommender systems have become a key component of the online experience.
Companies like Amazon use deep learning to drive their “customers who bought
this also bought” approach to encouraging additional purchases. Netflix uses a
similar approach to recommend movies that an individual may want to watch.
Many of the ideas behind these recommender systems are being used to identify
new molecules that may provide starting points for drug discovery efforts.

• Language translation was once the domain of very complex rule-based systems.
Over the last few years, systems driven by deep learning have outperformed sys‐
tems that had undergone years of manual curation. Many of the same ideas are
now being used to extract concepts from the scientific literature and alert scien‐
tists to journal articles that they may have missed.

These are just a few of the innovations that have come about through the application
of deep learning methods. We are at an interesting time when we have a convergence
of widely available scientific data and methods for processing that data. Those with
the ability to combine data with new methods for learning from patterns in that data
can make significant scientific advances.

Contemporary Life Science Is About Data
As mentioned previously, the fundamental nature of life science has changed. The
availability of robotics and miniaturized experiments has brought about dramatic
increases in the amount of experimental data that can be generated. In the 1980s a
biologist would perform a single experiment and generate a single result. This sort of
data could typically be manipulated by hand with the possible assistance of a pocket
calculator. If we fast-forward to today’s biology, we have instrumentation that is capa‐
ble of generating millions of experimental data points in a day or two. Experiments

2 | Chapter 1: Why Life Science?

1 Furbush, James. “Machine Learning: A Quick and Simple Definition.” https://www.oreilly.com/ideas/machine-
learning-a-quick-and-simple-definition. 2018.

like gene sequencing, which can generate huge datasets, have become inexpensive
and routine.

The advances in gene sequencing have led to the construction of databases that link
an individual’s genetic code to a multitude of health-related outcomes, including dia‐
betes, cancer, and genetic diseases such as cystic fibrosis. By using computational
techniques to analyze and mine this data, scientists are developing an understanding
of the causes of these diseases and using this understanding to develop new treat‐
ments.

Disciplines that once relied primarily on human observation are now utilizing data‐
sets that simply could not be analyzed manually. Machine learning is now routinely
used to classify images of cells. The output of these machine learning models is used
to identify and classify cancerous tumors and to evaluate the effects of potential dis‐
ease treatments.

Advances in experimental techniques have led to the development of several data‐
bases that catalog the structures of chemicals and the effects that these chemicals have
on a wide range of biological processes or activities. These structure–activity relation‐
ships (SARs) form the basis of a field known as chemical informatics, or cheminfor‐
matics. Scientists mine these large datasets and use the data to build predictive models
that will drive the next generation of drug development.

With these large amounts of data comes a need for a new breed of scientist who is
comfortable in both the scientific and computational domains. Those with these
hybrid capabilities have the potential to unlock structure and trends in large datasets
and to make the scientific discoveries of tomorrow.

What Will You Learn?
In the first few chapters of this book, we provide an overview of deep learning and
how it can be applied in the life sciences. We begin with machine learning, which has
been defined as “the science (and art) of programming computers so that they can
learn from data.”1

Chapter 2 provides a brief introduction to deep learning. We begin with an example
of how this type of machine learning can be used to perform a simple task like linear
regression, and progress to more sophisticated models that are commonly used to
solve real-world problems in the life sciences. Machine learning typically proceeds by
initially splitting a dataset into a training set that is used to generate a model and a
test set that is used to assess the performance of the model. In Chapter 2 we discuss

What Will You Learn? | 3

https://www.oreilly.com/ideas/machine-learning-a-quick-and-simple-definition
https://www.oreilly.com/ideas/machine-learning-a-quick-and-simple-definition

some of the details surrounding the training and validation of predictive models.
Once a model has been generated, its performance can typically be optimized by
varying a number of characteristics known as hyperparameters. The chapter provides
an overview of this process. Deep learning is not a single technique, but a set of
related methods. Chapter 2 concludes with an introduction to a few of the most
important deep learning variants.

In Chapter 3, we introduce DeepChem, an open source programming library that has
been specifically designed to simplify the creation of deep learning models for a vari‐
ety of life science applications. After providing an overview of DeepChem, we intro‐
duce our first programming example, which demonstrates how the DeepChem
library can be used to generate a model for predicting the toxicity of molecules. In a
second programming example, we show how DeepChem can be used to classify
images, a common task in modern biology. As briefly mentioned earlier, deep learn‐
ing is used in a variety of imaging applications, ranging from cancer diagnosis to the
detection of glaucoma. This discussion of specific applications then motivates an
explanation of some of the inner workings of deep learning methods.

Chapter 4 provides an overview of how machine learning can be applied to mole‐
cules. We begin by introducing molecules, the building blocks of everything around
us. Although molecules can be considered analogous to building blocks, they are not
rigid. Molecules are flexible and exhibit dynamic behavior. In order to characterize
molecules using a computational method like deep learning, we need to find a way to
represent molecules in a computer. These encodings can be thought of as similar to
the way in which an image can be represented as a set of pixels. In the second half of
Chapter 4, we describe a number of ways that molecules can be represented and how
these representations can be used to build deep learning models.

Chapter 5 provides an introduction to the field of biophysics, which applies the laws
of physics to biological phenomena. We start with a discussion of proteins, the molec‐
ular machines that make life possible. A key component of predicting the effects of
drugs on the body is understanding their interactions with proteins. In order to
understand these effects, we begin with an overview of how proteins are constructed
and how protein structures differ. Proteins are entities whose 3D structure dictates
their biological function. For a machine learning model to predict the impact of a
drug molecule on a protein’s function, we need to represent that 3D structure in a
form that can be processed by a machine learning program. In the second half of
Chapter 5, we explore a number of ways that protein structures can be represented.
With this knowledge in hand, we then review another code example where we use
deep learning to predict the degree to which a drug molecule will interact with a pro‐
tein.

Genetics has become a key component of contemporary medicine. The genetic
sequencing of tumors has enabled the personalized treatment of cancer and has the

4 | Chapter 1: Why Life Science?

potential to revolutionize medicine. Gene sequencing, which used to be a complex
process requiring huge investments, has now become commonplace and can be rou‐
tinely carried out. We have even reached the point where dog owners can get inex‐
pensive genetic tests to determine their pets’ lineage. In Chapter 6, we provide an
overview of genetics and genomics, beginning with an introduction to DNA and
RNA, the templates that are used to produce proteins. Recent discoveries have
revealed that the interactions of DNA and RNA are much more complex than origi‐
nally believed. In the second half of Chapter 6, we present several code examples that
demonstrate how deep learning can be used to predict a number of factors that influ‐
ence the interactions of DNA and RNA.

Earlier in this chapter, we alluded to the many advances that have come about
through the application of deep learning to the analysis of biological and medical
images. Many of the phenomena studied in these experiments are too small to be
observed by the human eye. In order to obtain the images used with deep learning
methods, we need to utilize a microscope. Chapter 7 provides an overview of micro‐
scopy in its myriad forms, ranging from the simple light microscope we all used in
school to sophisticated instruments that are capable of obtaining images at atomic
resolution. This chapter also covers some of the limitations of current approaches,
and provides information on the experimental pipelines used to obtain the images
that drive deep learning models.

One area that offers tremendous promise is the application of deep learning to medi‐
cal diagnosis. Medicine is incredibly complex, and no physician can personally
embody all of the available medical knowledge. In an ideal situation, a machine learn‐
ing model could digest the medical literature and aid medical professionals in making
diagnoses. While we have yet to reach this point, a number of positive steps have been
made. Chapter 8 begins with a history of machine learning methods for medical diag‐
nosis and charts the transition from hand-encoded rules to statistical analysis of med‐
ical outcomes. As with many of the topics we’ve discussed, a key component is
representing medical information in a format that can be processed by a machine
learning program. In this chapter, we provide an introduction to electronic health
records and some of the issues surrounding these records. In many cases, medical
images can be very complex and the analysis and interpretation of these images can
be difficult for even skilled human specialists. In these cases, deep learning can aug‐
ment the skills of a human analyst by classifying images and identifying key features.
Chapter 8 concludes with a number of examples of how deep learning is used to ana‐
lyze medical images from a variety of areas.

As we mentioned earlier, machine learning is becoming a key component of drug dis‐
covery efforts. Scientists use deep learning models to evaluate the interactions
between drug molecules and proteins. These interactions can elicit a biological
response that has a therapeutic impact on a patient. The models we’ve discussed so far
are discriminative models. Given a set of characteristics of a molecule, the model gen‐

What Will You Learn? | 5

erates a prediction of some property. These predictions require an input molecule,
which may be derived from a large database of available molecules or may come from
the imagination of a scientist. What if, rather than relying on what currently exists, or
what we can imagine, we had a computer program that could “invent” new mole‐
cules? Chapter 9 presents a type of deep learning program called a generative model.
A generative model is initially trained on a set of existing molecules, then used to
generate new molecules. The deep learning program that generates these molecules
can also be influenced by other models that predict the activity of the new molecules.

Up to now, we have discussed deep learning models as “black boxes.” We present the
model with a set of input data and the model generates a prediction, with no explana‐
tion of how or why the prediction was generated. This type of prediction can be less
than optimal in many situations. If we have a deep learning model for medical diag‐
nosis, we often need to understand the reasoning behind the diagnosis. An explana‐
tion of the reasons for the diagnosis will provide a physician with more confidence in
the prediction and may also influence treatment decisions. One historic drawback to
deep learning has been the fact that the models, while often reliable, can be difficult
to interpret. A number of techniques are currently being developed to enable users to
better understand the factors that led to a prediction. Chapter 10 provides an over‐
view of some of these techniques used to enable human understanding of model pre‐
dictions. Another important aspect of predictive models is the accuracy of a model’s
predictions. An understanding of a model’s accuracy can help us determine how
much to rely on that model. Given that machine learning can be used to potentially
make life-saving diagnoses, an understanding of model accuracy is critical. The final
section of Chapter 10 provides an overview of some of the techniques that can be
used to assess the accuracy of model predictions.

In Chapter 11 we present a real-world case study using DeepChem. In this example,
we use a technique called virtual screening to identify potential starting points for the
discovery of new drugs. Drug discovery is a complex process that often begins with a
technique known as screening. Screening is used to identify molecules that can be
optimized to eventually generate drugs. Screening can be carried out experimentally,
where millions of molecules are tested in miniaturized biological tests known as
assays, or in a computer using virtual screening. In virtual screening, a set of known
drugs or other biologically active molecules is used to train a machine learning
model. This machine learning model is then used to predict the activity of a large set
of molecules. Because of the speed of machine learning methods, hundreds of mil‐
lions of molecules can typically be processed in a few days of computer time.

The final chapter of the book examines the current impact and future potential of
deep learning in the life sciences. A number of challenges for current efforts, includ‐
ing the availability and quality of datasets, are discussed. We also highlight opportuni‐
ties and potential pitfalls in a number of other areas including diagnostics,
personalized medicine, pharmaceutical development, and biology research.

6 | Chapter 1: Why Life Science?

CHAPTER 2

Introduction to Deep Learning

The goal of this chapter is to introduce the basic principles of deep learning. If you
already have lots of experience with deep learning, you should feel free to skim this
chapter and then go on to the next. If you have less experience, you should study this
chapter carefully as the material it covers will be essential to understanding the rest of
the book.

In most of the problems we will discuss, our task will be to create a mathematical
function:

y = f x

Notice that x and y are written in bold. This indicates they are vectors. The function
might take many numbers as input, perhaps thousands or even millions, and it might
produce many numbers as outputs. Here are some examples of functions you might
want to create:

• x contains the colors of all the pixels in an image. f x should equal 1 if the image
contains a cat and 0 if it does not.

• The same as above, except f x should be a vector of numbers. The first element
indicates whether the image contains a cat, the second whether it contains a dog,
the third whether it contains an airplane, and so on for thousands of types of
objects.

• x contains the DNA sequence for a chromosome. y should be a vector whose
length equals the number of bases in the chromosome. Each element should
equal 1 if that base is part of a region that codes for a protein, or 0 if not.

• x describes the structure of a molecule. (We will discuss various ways of repre‐
senting molecules in later chapters.) y should be a vector where each element

7

describes some physical property of the molecule: how easily it dissolves in water,
how strongly it binds to some other molecule, and so on.

As you can see, f x could be a very, very complicated function! It usually takes a
long vector as input and tries to extract information from it that is not at all obvious
just from looking at the input numbers.

The traditional approach to solving this problem is to design a function by hand. You
would start by analyzing the problem. What patterns of pixels tend to indicate the
presence of a cat? What patterns of DNA tend to distinguish coding regions from
noncoding ones? You would write computer code to recognize particular types of fea‐
tures, then try to identify combinations of features that reliably produce the result
you want. This process is slow and labor-intensive, and depends heavily on the exper‐
tise of the person carrying it out.

Machine learning takes a totally different approach. Instead of designing a function
by hand, you allow the computer to learn its own function based on data. You collect
thousands or millions of images, each labeled to indicate whether it includes a cat.
You present all of this training data to the computer, and let it search for a function
that is consistently close to 1 for the images with cats and close to 0 for the ones
without.

What does it mean to “let the computer search for a function”? Generally speaking,
you create a model that defines some large class of functions. The model includes
parameters, variables that can take on any value. By choosing the values of the param‐
eters, you select a particular function out of all the many functions in the class
defined by the model. The computer’s job is to select values for the parameters. It tries
to find values such that, when your training data is used as input, the output is as
close as possible to the corresponding targets.

Linear Models
One of the simplest models you might consider trying is a linear model:

y = Mx + b

In this equation, M is a matrix (sometimes referred to as the “weights”) and b is a
vector (referred to as the “biases”). Their sizes are determined by the numbers of
input and output values. If x has length T and you want y to have length S, then M
will be an S × T matrix and b will be a vector of length S. Together, they make up the
parameters of the model. This equation simply says that each output component is a
linear combination of the input components. By setting the parameters (M and b),
you can choose any linear combination you want for each component.

8 | Chapter 2: Introduction to Deep Learning

This was one of the very earliest machine learning models. It was introduced back in
1957 and was called a perceptron. The name is an amazing piece of marketing: it has a
science fiction sound to it and seems to promise wonderful things, when in fact it is
nothing more than a linear transform. In any case, the name has managed to stick for
more than half a century.

The linear model is very easy to formulate in a completely generic way. It has exactly
the same form no matter what problem you apply it to. The only differences between
linear models are the lengths of the input and output vectors. From there, it is just a
matter of choosing the parameter values, which can be done in a straightforward way
with generic algorithms. That is exactly what we want for machine learning: a model
and algorithms that are independent of what problem you are trying to solve. Just
provide the training data, and parameters are automatically determined that trans‐
form the generic model into a function that solves your problem.

Unfortunately, linear models are also very limited. As demonstrated in Figure 2-1, a
linear model (in one dimension, that means a straight line) simply cannot fit most
real datasets. The problem becomes even worse when you move to very high-
dimensional data. No linear combination of pixel values in an image will reliably
identify whether the image contains a cat. The task requires a much more compli‐
cated nonlinear model. In fact, any model that solves that problem will necessarily be
very complicated and very nonlinear. But how can we formulate it in a generic way?
The space of all possible nonlinear functions is infinitely complex. How can we define
a model such that, just by choosing values of parameters, we can create almost any
nonlinear function we are ever likely to want?

Figure 2-1. A linear model cannot fit data points that follow a curve. This requires a
nonlinear model.

Linear Models | 9

Multilayer Perceptrons
A simple approach is to stack multiple linear transforms, one after another. For
example, we could write:

y = M2� M1x + b1 + b2

Look carefully at what we have done here. We start with an ordinary linear transform,
M1x + b1. We then pass the result through a nonlinear function � x , and then apply
a second linear transform to the result. The function � x , which is known as the
activation function, is an essential part of what makes this work. Without it, the model
would still be linear, and no more powerful than the previous one. A linear combina‐
tion of linear combinations is itself nothing more than a linear combination of the
original inputs! By inserting a nonlinearity, we enable the model to learn a much
wider range of functions.

We don’t need to stop at two linear transforms. We can stack as many as we want on
top of each other:

h1 = �1 M1x + b1

h2 = �2 M2h1 + b2

 ...

hn − 1 = �n − 1 Mn − 1hn − 2 + bn − 1

y = �n Mnhn − 1 + bn

This model is called a multilayer perceptron, or MLP for short. The middle steps hi are
called hidden layers. The name refers to the fact that they are neither inputs nor out‐
puts, just intermediate values used in the process of calculating the result. Also notice
that we have added a subscript to each � x . This indicates that different layers might
use different nonlinearities.

You can visualize this calculation as a stack of layers, as shown in Figure 2-2. Each
layer corresponds to a linear transformation followed by a nonlinearity. Information
flows from one layer to another, the output of one layer becoming the input to the
next. Each layer has its own set of parameters that determine how its output is calcu‐
lated from its input.

10 | Chapter 2: Introduction to Deep Learning

Figure 2-2. A multilayer perceptron, viewed as a stack of layers with information flowing
from one layer to the next.

Multilayer perceptrons and their variants are also sometimes called neural networks.
The name reflects the parallels between machine learning and neurobiology. A bio‐
logical neuron connects to many other neurons. It receives signals from them, adds
the signals together, and then sends out its own signals based on the result. As a very
rough approximation, you can think of MLPs as working the same way as the neu‐
rons in your brain!

What should the activation function � x be? The surprising answer is that it mostly
doesn’t matter. Of course, that is not entirely true. It obviously does matter, but not as
much as you might expect. Nearly any reasonable function (monotonic, reasonably
smooth) can work. Lots of different functions have been tried over the years, and
although some work better than others, nearly all of them can produce decent results.

The most popular activation function today is probably the rectified linear unit
(ReLU), � x = max 0, x . If you aren’t sure what function to use, this is probably a
good default. Other common choices include the hyperbolic tangent, tanh x , and the
logistic sigmoid, � x = 1/ 1 + e−x . All of these functions are shown in Figure 2-3.

Figure 2-3. Three common activation functions: the rectified linear unit, hyperbolic tan‐
gent, and logistic sigmoid.

We also must choose two other properties for an MLP: its width and its depth. With
the simple linear model, we had no choices to make. Given the lengths of x and y, the

Multilayer Perceptrons | 11

sizes of M and b were completely determined. Not so with hidden layers. Width
refers to the size of the hidden layers. We can choose each hi to have any length we
want. Depending on the problem, you might want them to be much larger or much
smaller than the input and output vectors.

Depth refers to the number of layers in the model. A model with only one hidden
layer is described as shallow. A model with many hidden layers is described as deep.
This is, in fact, the origin of the term “deep learning”; it simply means “machine
learning using models with lots of layers.”

Choosing the number and widths of layers in your model involves as much art as sci‐
ence. Or, to put it more formally, “This is still an active field of research.” Often it just
comes down to trying lots of combinations and seeing what works. There are a few
principles that may provide guidance, however, or at least help you understand your
results in hindsight:

1. An MLP with one hidden layer is a universal approximator.
This means it can approximate any function at all (within certain fairly reason‐
able limits). In a sense, you never need more than one hidden layer. That is
already enough to reproduce any function you are ever likely to want. Unfortu‐
nately, this result comes with a major caveat: the accuracy of the approximation
depends on the width of the hidden layer, and you may need a very wide layer to
get sufficient accuracy for a given problem. This brings us to the second princi‐
ple.

2. Deep models tend to require fewer parameters than shallow ones.
This statement is intentionally somewhat vague. More rigorous statements can be
proven for particular special cases, but it does still apply as a general guideline.
Here is perhaps a better way of stating it: every problem requires a model with a
certain depth to efficiently achieve acceptable accuracy. At shallower depths, the
required widths of the layers (and hence the total number of parameters)
increase rapidly. This makes it sound like you should always prefer deep models
over shallow ones. Unfortunately, it is partly contradicted by the third principle.

3. Deep models tend to be harder to train than shallow ones.
Until about 2007, most machine learning models were shallow. The theoretical
advantages of deep models were known, but researchers were usually unsuccess‐
ful at training them. Since then, a series of advances has gradually improved the
usefulness of deep models. These include better training algorithms, new types of
models that are easier to train, and of course faster computers combined with
larger datasets on which to train the models. These advances gave rise to “deep
learning” as a field. Yet despite the improvements, the general principle remains
true: deeper models tend to be harder to train than shallower ones.

12 | Chapter 2: Introduction to Deep Learning

Training Models
This brings us to the next subject: just how do we train a model anyway? MLPs pro‐
vide us with a (mostly) generic model that can be used for any problem. (We will dis‐
cuss other, more specialized types of models a little later.) Now we want a similarly
generic algorithm to find the optimal values of the model’s parameters for a given
problem. How do we do that?

The first thing you need, of course, is a collection of data to train it on. This dataset is
known as the training set. It should consist of a large number of (x,y) pairs, also
known as samples. Each sample specifies an input to the model, and what you want
the model’s output to be when given that input. For example, the training set could be
a collection of images, along with labels indicating whether or not each image con‐
tains a cat.

Next you need to define a loss function L y, y , where y is the actual output from the
model and y is the target value specified in the training set. This is how you measure
whether the model is doing a good job of reproducing the training data. It is then
averaged over every sample in the training set:

average loss = 1
N Σ

i = 1

N
L yi, yi

L y, y should be small when its arguments are close together and large when they are
far apart. In other words, we take every sample in the training set, try using each one
as an input to the model, and see how close the output is to the target value. Then we
average this over the whole training set.

An appropriate loss function needs to be chosen for each problem. A common
choice is the Euclidean distance (also known as the L2 distance),
L y, y = Σi yi − y i

2. (In this expression, yi means the i‘th component of the vector
y.) When y represents a probability distribution, a popular choice is the cross
entropy, L y, y = − Σi yi log y i. Other choices are also possible, and there is no uni‐
versal “best” choice. It depends on the details of your problem.

Now that we have a way to measure how well the model works, we need a way to
improve it. We want to search for the parameter values that minimize the average loss
over the training set. There are many ways to do this, but most work in deep learning
uses some variant of the gradient descent algorithm. Let θ represent the set of all
parameters in the model. Gradient descent involves taking a series of small steps:

θ θ − � ∂
∂θ L

Training Models | 13

where L is the average loss over the training set. Each step moves a tiny distance in
the “downhill” direction. It changes each of the model’s parameters by a little bit, with
the goal of causing the average loss to decrease. If all the stars align and the phase of
the moon is just right, this will eventually produce parameters that do a good job of
solving your problem. � is called the learning rate, and it determines how much the
parameters change on each step. It needs to be chosen very carefully: too small a
value will cause learning to be very slow, while too large a value will prevent the algo‐
rithm from learning at all.

This algorithm really does work, but it has a serious problem. For every step of gradi‐
ent descent, we need to loop over every sample in the training set. That means the
time required to train the model is proportional to the size of the training set! Sup‐
pose that you have one million samples in the training set, that computing the gradi‐
ent of the loss for one sample requires one million operations, and that it takes one
million steps to find a good model. (All of these numbers are fairly typical of real
deep learning applications.) Training will then require one quintillion operations.
That takes quite a long time, even on a fast computer.

Fortunately, there is a better solution: estimate L by averaging over a much smaller
number of samples. This is the basis of the stochastic gradient descent (SGD) algo‐
rithm. For every step, we take a small set of samples (known as a batch) from the
training set and compute the gradient of the loss function, averaged over only the
samples in the batch. We can view this as an estimate of what we would have gotten if
we had averaged over the entire training set, although it may be a very noisy estimate.
We perform a single step of gradient descent, then select a new batch of samples for
the next step.

This algorithm tends to be much faster. The time required for each step depends only
on the size of each batch, which can be quite small (often on the order of 100 sam‐
ples) and is independent of the size of the training set. The disadvantage is that each
step does a less good job of reducing the loss, because it is based on a noisy estimate
of the gradient rather than the true gradient. Still, it leads to a much shorter training
time overall.

Most optimization algorithms used in deep learning are based on SGD, but there are
many variations that improve on it in different ways. Fortunately, you can usually
treat these algorithms as black boxes and trust them to do the right thing without
understanding all the details of how they work. Two of the most popular algorithms
used today are called Adam and RMSProp. If you are in doubt about what algorithm
to use, either one of those will probably be a reasonable choice.

14 | Chapter 2: Introduction to Deep Learning

Validation
Suppose you have done everything described so far. You collected a large set of train‐
ing data. You selected a model, then ran a training algorithm until the loss became
very small. Congratulations, you now have a function that solves your problem!

Right?

Sorry, it’s not that simple! All you really know for sure is that the function works well
on the training data. You might hope it will also work well on other data, but you cer‐
tainly can’t count on it. Now you need to validate the model to see whether it works
on data that it hasn’t been specifically trained on.

To do this you need a second dataset, called the test set. It has exactly the same form
as the training set, a collection of x, y pairs, but the two should have no samples in
common. You train the model on the training set, then test it on the test set. This
brings us to one of the most important principles in machine learning:

• You must not use the test set in any way while designing or training the model.

In fact, it is best if you never even look at the data in the test set. Test set data is only
for testing the fully trained model to find out how well it works. If you allow the test
set to influence the model in any way, you risk getting a model that works better on
the test set than on other data that was not involved in creating the model. It ceases to
be a true test set, and becomes just another type of training set.

This is connected to the mathematical concept of overfitting. The training data is sup‐
posed to be representative of a much larger data distribution, the set of all inputs you
might ever want to use the model on. But you can’t train it on all possible inputs. You
can only create a finite set of training samples, train the model on those, and hope it
learns general strategies that work equally well on other samples. Overfitting is what
happens when the training picks up on specific features of the training samples, such
that the model works better on them than it does on other samples.

Regularization
Overfitting is a major problem for anyone who uses machine learning. Given that,
you won’t be surprised to learn that lots of techniques have been developed for avoid‐
ing it. These techniques are collectively known as regularization. The goal of any reg‐
ularization technique is to avoid overfitting and produce a trained model that works
well on any input, not just the particular inputs that were used for training.

Before we discuss particular regularization techniques, there are two very important
points to understand about it.

Validation | 15

First, the best way to avoid overfitting is almost always to get more training data. The
bigger your training set, the better it represents the “true” data distribution, and the
less likely the learning algorithm is to overfit. Of course, that is sometimes impossi‐
ble: maybe you simply have no way to get more data, or the data may be very expen‐
sive to collect. In that case, you just have to do the best you can with the data you
have, and if overfitting is a problem, you will have to use regularization to avoid it.
But more data will probably lead to a better result than regularization.

Second, there is no universally “best” way to do regularization. It all depends on the
problem. After all, the training algorithm doesn’t know that it’s overfitting. All it
knows about is the training data. It doesn’t know how the true data distribution dif‐
fers from the training data, so the best it can do is produce a model that works well
on the training set. If that isn’t what you want, it’s up to you to tell it.

That is the essence of any regularization method: biasing the training process to pre‐
fer certain types of models over others. You make assumptions about what properties
a “good” model should have, and how it differs from an overfit one, and then you tell
the training algorithm to prefer models with those properties. Of course, those
assumptions are often implicit rather than explicit. It may not be obvious what
assumptions you are making by choosing a particular regularization method. But
they are always there.

One of the simplest regularization methods is just to train the model for fewer steps.
Early in training, it tends to pick up on coarse properties of the training data that
likely apply to the true distribution. The longer it runs, the more likely it is to start
picking up on fine details of particular training samples. By limiting the number of
training steps, you give it less opportunity to overfit. More formally, you are really
assuming that “good” parameter values should not be too different from whatever
values you start training from.

Another method is to restrict the magnitude of the parameters in the model. For
example, you might add a term to the loss function that is proportional to θ 2, where
θ is a vector containing all of the model’s parameters. By doing this, you are assuming
that “good” parameter values should not be any larger than necessary. It reflects the
fact that overfitting often (though not always) involves some parameters becoming
very large.

A very popular method of regularization is called dropout. It involves doing some‐
thing that at first seems ridiculous, but actually works surprisingly well. For each hid‐
den layer in the model, you randomly select a subset of elements in the output vector
hi and set them to 0. On every step of gradient descent, you pick a different random
subset of elements. This might seem like it would just break the model: how can you
expect it to work when internal calculations keep randomly getting set to 0? The
mathematical theory for why dropout works is a bit complicated. Very roughly speak‐
ing, by using dropout you are assuming that no individual calculation within the

16 | Chapter 2: Introduction to Deep Learning

model should be too important. You should be able to randomly remove any individ‐
ual calculation, and the rest of the model should continue to work without it. This
forces it to learn redundant, highly distributed representations of data that make
overfitting unlikely. If you are unsure of what regularization method to use, dropout
is a good first thing to try.

Hyperparameter Optimization
By now you have probaly noticed that there are a lot of choices to make, even when
using a supposedly generic model with a “generic” learning algorithm. Examples
include:

• The number of layers in the model
• The width of each layer
• The number of training steps to perform
• The learning rate to use during training
• The fraction of elements to set to 0 when using dropout

These options are called hyperparameters. A hyperparameter is any aspect of the
model or training algorithm that must be set in advance rather than being learned by
the training algorithm. But how are you supposed to choose them—and isn’t the
whole point of machine learning to select settings automatically based on data?

This brings us to the subject of hyperparameter optimization. The simplest way of
doing it is just to try lots of values for each hyperparameter and see what works best.
This becomes very expensive when you want to try lots of values for lots of hyper‐
parameters, so there are more sophisticated approaches, but the basic idea remains
the same: try different combinations and see what works best.

But how can you tell what works best? The simplest answer would be to just see what
produces the lowest value of the loss function (or some other measure of accuracy)
on the training set. But remember, that isn’t what we really care about. We want to
minimize error on the test set, not the training set. This is especially important for
hyperparameters that affect regularization, such as the dropout rate. A low training
set error might just mean the model is overfitting, optimizing for the precise details
of the training data. So instead we want to try lots of hyperparameter values, then use
the ones that minimize the loss on the test set.

But we mustn’t do that! Remember: you must not use the test set in any way while
designing or training the model. Its job is to tell you how well the model is likely to
work on new data it has never seen before. Just because a particular set of hyperpara‐
meters happens to work best on the test set doesn’t guarantee those values will always

Hyperparameter Optimization | 17

work best. We must not allow the test set to influence the model, or it is no longer an
unbiased test set.

The solution is to create yet another dataset, which is called the validation set. It must
not share any samples with either the training set or the test set. The full procedure
now works as follows:

1. For each set of hyperparameter values, train the model on the training set, then
compute the loss on the validation set.

2. Whichever set of hyperparameters give the lowest loss on the validation set,
accept them as your final model.

3. Evaluate that final model on the test set to get an unbiased measure of how well it
works.

Other Types of Models
This still leaves one more decision you need to make, and it is a huge subject in itself:
what kind of model to use. Earlier in this chapter we introduced multilayer percep‐
trons. They have the advantage of being a generic class of models that can be applied
to many different problems. Unfortunately, they also have serious disadvantages.
They require a huge number of parameters, which makes them very susceptible to
overfitting. They become difficult to train when they have more than one or two hid‐
den layers. In many cases, you can get a better result by using a less generic model
that takes advantage of specific features of your problem.

Much of the content of this book consists of discussing particular types of models
that are especially useful in the life sciences. Those can wait until later chapters. But
for the purposes of this introduction, there are two very important classes of models
we should discuss that are widely used in many different fields. They are called con‐
volutional neural networks and recurrent neural networks.

Convolutional Neural Networks
Convolutional neural networks (CNNs for short) were one of the very first classes of
deep models to be widely used. They were developed for use in image processing and
computer vision. They remain an excellent choice for many kinds of problems that
involve continuous data sampled on a rectangular grid: audio signals (1D), images
(2D), volumetric MRI data (3D), and so on.

They are also a class of models that truly justify the term “neural network.” The
design of CNNs was originally inspired by the workings of the feline visual cortex.
(Cats have played a central role in deep learning from the dawn of the field.) Research
performed from the 1950s to the 1980s revealed that vision is processed through a

18 | Chapter 2: Introduction to Deep Learning

series of layers. Each neuron in the first layer takes input from a small region of the
visual field (its receptive field). Different neurons are specialized to detect particular
local patterns or features, such as vertical or horizontal lines. Cells in the second layer
take input from local clusters of cells in the first layer, combining their signals to
detect more complicated patterns over a larger receptive field. Each layer can be
viewed as a new representation of the original image, described in terms of larger and
more abstract patterns than the ones in the previous layer.

CNNs mirror this design, sending an input image through a series of layers. In that
sense, they are just like MLPs, but the structure of each layer is very different. MLPs
use fully connected layers. Every element of the output vector depends on every ele‐
ment of the input vector. CNNs use convolutional layers that take advantage of spatial
locality. Each output element corresponds to a small region of the image, and only
depends on the input values in that region. This enormously reduces the number of
parameters defining each layer. In effect, it assumes that most elements of the weight
matrix Mi are 0, since each output element only depends on a small number of input
elements.

Convolutional layers take this a step further: they assume the parameters are the same
for every local region of the image. If a layer uses one set of parameters to detect hori‐
zontal lines at one location in the image, it also uses exactly the same parameters to
detect horizontal lines everywhere else in the image. This makes the number of
parameters for the layer independent of the size of the image. All it has to learn is a
single convolutional kernel that defines how output features are computed from any
local region of the image. That local region is often very small, perhaps 5 by 5 pixels.
In that case, the number of parameters to learn is only 25 times the number of output
features for each region. This is tiny compared to the number in a fully connected
layer, making CNNs much easier to train and much less susceptible to overfitting
than MLPs.

Recurrent Neural Networks
Recurrent neural networks (RNNs for short) are a bit different. They are normally
used to process data that takes the form of a sequence of elements: words in a text
document, bases in a DNA molecule, etc. The elements in the sequence are fed into
the network’s input one at a time. But then the network does something very differ‐
ent: the output from each layer is fed back into its own input on the next step! This
allows RNNs to have a sort of memory. When an element (word, DNA base, etc.)
from the sequence is fed into the network, the input to each layer depends on that
element, but also on all of the previous elements (Figure 2-4).

Other Types of Models | 19

Figure 2-4. A recurrent neural network. As each element (x1, x2, ...) of the sequence is fed
into the input, the output (y1, y2, ...) depends both on the input element and on the
RNN’s own output during the previous step.

So, the input to a recurrent layer has two parts: the regular input (that is, the output
from the previous layer in the network) and the recurrent input (which equals its own
output from the previous step). It then needs to calculate a new output based on
those inputs. In principle you could use a fully connected layer, but in practice that
usually doesn’t work very well. Researchers have developed other types of layers that
work much better in RNNs. The two most popular ones are called the gated recurrent
unit (GRU) and the long short-term memory (LSTM). Don’t worry about the details
for now; just remember that if you are creating an RNN, you should usually build it
out of one of those types of layers.

Having memory makes RNNs fundamentally different from the other models we
have discussed. With a CNN or MLP, you simply feed a value into the network’s input
and get a different value out. The output is entirely determined by the input. Not so
with an RNN. The model has its own internal state, composed of the outputs of all its
layers from the most recent step. Each time you feed a new value into the model, the
output depends not just on the input value but also on the internal state. Likewise, the
internal state is altered by each new input value. This makes RNNs very powerful,
and allows them to be used for lots of different applications.

20 | Chapter 2: Introduction to Deep Learning

Further Reading
Deep learning is a huge subject, and this chapter has only given the briefest introduc‐
tion to it. It should be enough to help you read and understand the rest of this book,
but if you plan to do serious work in the field, you will want to acquire a much more
thorough background. Fortunately, there are many excellent deep learning resources
available online. Here are some suggestions for material you might consult:

• Neural Networks and Deep Learning by Michael Nielsen (Determination Press)
covers roughly the same material as this chapter, but goes into far more detail on
every subject. If you want a solid working knowledge of the fundamentals of deep
learning, sufficient to make use of it in your own work, this is an excellent place
to start.

• Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville (MIT
Press) is a more advanced introduction written by some of the top researchers in
the field. It expects the reader to have a background similar to that of a graduate
student in computer science and goes into far more detail on the mathematical
theory behind the subject. You can easily use deep models without understanding
all of the theory, but if you want to do original research in deep learning (rather
than just using deep models as a tool to solve problems in other fields), this book
is a fantastic resource.

• TensorFlow for Deep Learning by Bharath Ramsundar and Reza Zadeh (O’Reilly)
provides a practitioner’s introduction to deep learning that seeks to build intu‐
ition about the core concepts without delving too deeply into the mathematical
underpinnings of such models. It might be a useful reference for those who are
interested in the practical aspects of deep learning.

Further Reading | 21

http://neuralnetworksanddeeplearning.com
http://www.deeplearningbook.org
http://shop.oreilly.com/product/0636920065869.do

CHAPTER 3

Machine Learning with DeepChem

This chapter provides a brief introduction to machine learning with DeepChem, a
library built on top of the TensorFlow platform to facilitate the use of deep learning
in the life sciences. DeepChem provides a large collection of models, algorithms, and
datasets that are suited to applications in the life sciences. In the remainder of this
book, we will use DeepChem to perform our case studies.

Why Not Just Use Keras, TensorFlow, or PyTorch?

This is a common question. The short answer is that the developers
of these packages focus their attention on supporting certain types
of use cases that prove useful to their core users. For example,
there’s extensive support for image processing, text handling, and
speech analysis. But there’s often not a similar level of support in
these libraries for molecule handling, genetic datasets, or micro‐
scopy datasets. The goal of DeepChem is to give these applications
first-class support in the library. This means adding custom deep
learning primitives, support for needed file types, and extensive
tutorials and documentation for these use cases.
DeepChem is also designed to be well integrated with the Tensor‐
Flow ecosystem, so you should be able to mix and match Deep‐
Chem code with your other TensorFlow application code.

In the rest of this chapter, we will assume that you have DeepChem installed on your
machine and that you are ready to run the examples. If you don’t have DeepChem
installed, never fear. Just head over to the DeepChem website and follow the installa‐
tion directions for your system.

23

https://deepchem.io/

Windows Support for DeepChem

At present, DeepChem doesn’t support installation on Windows. If
possible, we recommend that you work through the examples in
this book using a Mac or Linux workstation. We have heard from
our users that DeepChem works on the Windows Subsystem for
Linux (WSL) in more modern Windows distributions.
If it’s not feasible for you to get access to a Mac or Linux machine
or work with WSL, we’d love to have your help getting Windows
support for DeepChem. Please contact the authors with the specific
issues you’re seeing, and we will try to address them. Our hope is to
remove this restriction in a future edition of the book and support
Windows for future readers.

DeepChem Datasets
DeepChem uses the basic abstraction of theDataset object to wrap the data it uses for
machine learning. A Dataset contains the information about a set of samples: the
input vectors x, the target output vectors y, and possibly other information such as a
description of what each sample represents. There are subclasses of Dataset corre‐
sponding to different ways of storing the data. The NumpyDataset object in particular
serves as a convenient wrapper for NumPy arrays and will be used extensively. In this
section, we will walk through a simple code case study of how to use NumpyDataset.
All of this code can be entered in the interactive Python interpreter; where appropri‐
ate, the output is shown.

We start with some simple imports:

import deepchem as dc
import numpy as np

Let’s now construct some simple NumPy arrays:

x = np.random.random((4, 5))
y = np.random.random((4, 1))

This dataset will have four samples. The array x has five elements (“features”) for each
sample, and y has one element for each sample. Let’s take a quick look at the actual
arrays we’ve sampled (note that when you run this code locally, you should expect to
see different numbers since your random seed will be different):

In : x
Out:
array([[0.960767 , 0.31300931, 0.23342295, 0.59850938, 0.30457302],
 [0.48891533, 0.69610528, 0.02846666, 0.20008034, 0.94781389],
 [0.17353084, 0.95867152, 0.73392433, 0.47493093, 0.4970179],
 [0.15392434, 0.95759308, 0.72501478, 0.38191593, 0.16335888]])

24 | Chapter 3: Machine Learning with DeepChem

In : y
Out:
array([[0.00631553],
 [0.69677301],
 [0.16545319],
 [0.04906014]])

Let’s now wrap these arrays in a NumpyDataset object:

dataset = dc.data.NumpyDataset(x, y)

We can unwrap the dataset object to get at the original arrays that we stored inside:

In : print(dataset.X)
[[0.960767 0.31300931 0.23342295 0.59850938 0.30457302]
[0.48891533 0.69610528 0.02846666 0.20008034 0.94781389]
[0.17353084 0.95867152 0.73392433 0.47493093 0.4970179]
[0.15392434 0.95759308 0.72501478 0.38191593 0.16335888]]

In : print(dataset.y)
[[0.00631553]
[0.69677301]
[0.16545319]
[0.04906014]]

Note that these arrays are the same as the original arrays x and y:

In : np.array_equal(x, dataset.X)
Out : True

In : np.array_equal(y, dataset.y)
Out : True

Other Types of Datasets

DeepChem has support for other types of Dataset objects, as men‐
tioned previously. These types primarily become useful when deal‐
ing with larger datasets that can’t be entirely stored in computer
memory. There is also integration for DeepChem to use Tensor‐
Flow’s tf.data dataset loading utilities. We will touch on these
more advanced library features as we need them.

Training a Model to Predict Toxicity of Molecules
In this section, we will demonstrate how to use DeepChem to train a model to predict
the toxicity of molecules. In a later chapter, we will explain how toxicity prediction
for molecules works in much greater depth, but in this section, we will treat it as a
black-box example of how DeepChem models can be used to solve machine learning
challenges. Let’s start with a pair of needed imports:

Training a Model to Predict Toxicity of Molecules | 25

import numpy as np
import deepchem as dc

The next step is loading the associated toxicity datasets for training a machine learn‐
ing model. DeepChem maintains a module called dc.molnet (short for MoleculeNet)
that contains a number of preprocessed datasets for use in machine learning experi‐
mentation. In particular, we will make use of the dc.molnet.load_tox21() function,
which will load and process the Tox21 toxicity dataset for us. When you run these
commands for the first time, DeepChem will process the dataset locally on your
machine. You should expect to see processing notes like the following:

In : tox21_tasks, tox21_datasets, transformers = dc.molnet.load_tox21()
Out: Loading raw samples now.
shard_size: 8192
About to start loading CSV from /tmp/tox21.CSV.gz
Loading shard 1 of size 8192.
Featurizing sample 0
Featurizing sample 1000
Featurizing sample 2000
Featurizing sample 3000
Featurizing sample 4000
Featurizing sample 5000
Featurizing sample 6000
Featurizing sample 7000
TIMING: featurizing shard 0 took 15.671 s
TIMING: dataset construction took 16.277 s
Loading dataset from disk.
TIMING: dataset construction took 1.344 s
Loading dataset from disk.
TIMING: dataset construction took 1.165 s
Loading dataset from disk.
TIMING: dataset construction took 0.779 s
Loading dataset from disk.
TIMING: dataset construction took 0.726 s
Loading dataset from disk.

The process of featurization is how a dataset containing information about molecules
is transformed into matrices and vectors for use in machine learning analyses. We
will explore this process in greater depth in subsequent chapters. Let’s start here,
though, by taking a quick peek at the data we’ve processed.

The dc.molnet.load_tox21() function returns multiple outputs: tox21_tasks,
tox21_datasets, and transformers. Let’s briefly take a look at each:

In : tox21_tasks
Out:
['NR-AR',
'NR-AR-LBD',
'NR-AhR',
'NR-Aromatase',
'NR-ER',

26 | Chapter 3: Machine Learning with DeepChem

'NR-ER-LBD',
'NR-PPAR-gamma',
'SR-ARE',
'SR-ATAD5',
'SR-HSE',
'SR-MMP',
'SR-p53']

In : len(tox21_tasks)
Out: 12

Each of the 12 tasks here corresponds with a particular biological experiment. In this
case, each of these tasks is for an enzymatic assay which measures whether the mole‐
cules in the Tox21 dataset bind with the biological target in question. The terms NR-AR
and so on correspond with these targets. In this case, each of these targets is a partic‐
ular enzyme believed to be linked to toxic responses to potential therapeutic mole‐
cules.

How Much Biology Do I Need to Know?

For computer scientists and engineers entering the life sciences, the
array of biological terms can be dizzying. However, it’s not neces‐
sary to have a deep understanding of biology in order to begin
making an impact in the life sciences. If your primary background
is in computer science, it can be useful to try understanding biolog‐
ical systems in terms of computer scientific analogues. Imagine that
cells or animals are complex legacy codebases that you have no
control over. As an engineer, you have a few experimental measure‐
ments of these systems (assays) which you can use to gain some
understanding of the underlying mechanics. Machine learning is
an extraordinarily powerful tool for understanding biological sys‐
tems since learning algorithms are capable of extracting useful cor‐
relations in a mostly automatic fashion. This allows even biological
beginners to sometimes find deep biological insights.
In the remainder of this book, we discuss basic biology in brief
asides. These notes can serve as entry points into the vast biological
literature. Public references such as Wikipedia often contain a
wealth of useful information, and can help bootstrap your biologi‐
cal education.

Next, let’s consider tox21_datasets. The use of the plural is a clue that this field is
actually a tuple containing multipledc.data.Dataset objects:

In : tox21_datasets
Out:
(<deepchem.data.datasets.DiskDataset at 0x7f9804d6c390>,
<deepchem.data.datasets.DiskDataset at 0x7f9804d6c780>,
<deepchem.data.datasets.DiskDataset at 0x7f9804c5a518>)

Training a Model to Predict Toxicity of Molecules | 27

In this case, these datasets correspond to the training, validation, and test sets you
learned about in the previous chapter. You might note that these are DiskDataset
objects; the dc.molnet module caches these datasets on your disk so that you don’t
need to repeatedly refeaturize the Tox21 dataset. Let’s split up these datasets correctly:

train_dataset, valid_dataset, test_dataset = tox21_datasets

When dealing with new datasets, it’s very useful to start by taking a look at their
shapes. To do so, inspect the shape attribute:

In : train_dataset.X.shape
Out: (6264, 1024)

In : valid_dataset.X.shape
Out: (783, 1024)

In : test_dataset.X.shape
Out: (784, 1024)

The train_dataset contains a total of 6,264 samples, each of which has an associated
feature vector of length 1,024. Similarly, valid_dataset and test_datasetcontain
respectively 783 and 784 samples. Let’s now take a quick look at the y vectors for these
datasets:

In : np.shape(train_dataset.y)
Out: (6264, 12)

In : np.shape(valid_dataset.y)
Out: (783, 12)

In : np.shape(test_dataset.y)
Out: (784, 12)

There are 12 data points, also known as labels, for each sample. These correspond to
the 12 tasks we discussed earlier. In this particular dataset, the samples correspond to
molecules, the tasks correspond to biochemical assays, and each label is the result of a
particular assay on a particular molecule. Those are what we want to train our model
to predict.

There’s a complication, however: the actual experimental dataset for Tox21 did not
test every molecule in every biological experiment. That means that some of these
labels are meaningless placeholders. We simply don’t have any data for some proper‐
ties of some molecules, so we need to ignore those elements of the arrays when train‐
ing and testing the model.

How can we find which labels were actually measured? We can check the dataset’s w
field, which records its weights. Whenever we compute the loss function for a model,
we multiply by w before summing over tasks and samples. This can be used for a few
purposes, one being to flag missing data. If a label has a weight of 0, that label does

28 | Chapter 3: Machine Learning with DeepChem

not affect the loss and is ignored during training. Let’s do some digging to find how
many labels have actually been measured in our datasets:

In : train_dataset.w.shape
Out: (6264, 12)

In : np.count_nonzero(train_dataset.w)
Out: 62166

In : np.count_nonzero(train_dataset.w == 0)
Out: 13002

Of the 6,264 × 12 = 75,168 elements in the array of labels, only 62,166 were actually
measured. The other 13,002 correspond to missing measurements and should be
ignored. You might ask, then, why we still keep such entries around. The answer is
mainly for convenience; irregularly shaped arrays are much harder to reason about
and deal with in code than regular matrices with an associated set of weights.

Processing Datasets Is Challenging

It’s important to note here that cleaning and processing a dataset
for use in the life sciences can be extremely challenging. Many raw
datasets will contain systematic classes of errors. If the dataset in
question has been constructed from an experiment conducted by
an external organization (a contract research organization, or
CRO), it’s quite possible that the dataset will be systematically
wrong. For this reason, many life science organizations maintain
scientists in-house whose job it is to verify and clean such datasets.
In general, if your machine learning algorithm isn’t working for a
life science task, there’s a significant chance that the root cause
stems not from the algorithm but from systematic errors in the
source of data that you’re using.

Now let’s examine transformers, the final output that was returned by
load_tox21(). A transformer is an object that modifies a dataset in some way. Deep‐
Chem provides many transformers that manipulate data in useful ways. The data-
loading routines found in MoleculeNet always return a list of transformers that have
been applied to the data, since you may need them later to “untransform” the data.
Let’s see what we have in this case:

In : transformers
Out: [<deepchem.trans.transformers.BalancingTransformer at 0x7f99dd73c6d8>]

Here, the data has been transformed with a BalancingTransformer. This class is used
to correct for unbalanced data. In the case of Tox21, most molecules do not bind to
most of the targets. In fact, over 90% of the labels are 0. That means a model could
trivially achieve over 90% accuracy simply by always predicting 0, no matter what

Training a Model to Predict Toxicity of Molecules | 29

input it was given. Unfortunately, that model would be completely useless! Unbal‐
anced data, where there are many more training samples for some classes than others,
is a common problem in classification tasks.

Fortunately, there is an easy solution: adjust the dataset’s matrix of weights to com‐
pensate. BalancingTransformer adjusts the weights for individual data points so that
the total weight assigned to every class is the same. That way, the loss function has no
systematic preference for any one class. The loss can only be decreased by learning to
correctly distinguish between classes.

Now that we’ve explored the Tox21 datasets, let’s start exploring how we can train
models on these datasets. DeepChem’s dc.models submodule contains a variety of
different life science–specific models. All of these various models inherit from the
parent class dc.models.Model. This parent class is designed to provide a common
API that follows common Python conventions. If you’ve used other Python machine
learning packages, you should find that many of the dc.models.Model methods look
quite familiar.

In this chapter, we won’t really dig into the details of how these models are construc‐
ted. Rather, we will just provide an example of how to instantiate a standard Deep‐
Chem model, dc.models.MultitaskClassifier. This model builds a fully connected
network (an MLP) that maps input features to multiple output predictions. This
makes it useful for multitask problems, where there are multiple labels for every sam‐
ple. It’s well suited for our Tox21 datasets, since we have a total of 12 different assays
we wish to predict simultaneously. Let’s see how we can construct a MultitaskClassi
fier in DeepChem:

model = dc.models.MultitaskClassifier(n_tasks=12,
n_features=1024,
layer_sizes=[1000])

There are a variety of different options here. Let’s briefly review them. n_tasks is the
number of tasks, and n_features is the number of input features for each sample. As
we saw earlier, the Tox21 dataset has 12 tasks and 1,024 features for each sample.
layer_sizes is a list that sets the number of fully connected hidden layers in the net‐
work, and the width of each one. In this case, we specify that there is a single hidden
layer of width 1,000.

Now that we’ve constructed the model, how can we train it on the Tox21 datasets?
Each Model object has a fit() method that fits the model to the data contained in a
Dataset object. Fitting our MultitaskClassifier object is then a simple call:

model.fit(train_dataset, nb_epoch=10)

Note that we added on a flag here. nb_epoch=10 says that 10 epochs of gradient
descent training will be conducted. An epoch refers to one complete pass through all
the samples in a dataset. To train a model, you divide the training set into batches and

30 | Chapter 3: Machine Learning with DeepChem

take one step of gradient descent for each batch. In an ideal world, you would reach a
well-optimized model before running out of data. In practice, there usually isn’t
enough training data for that, so you run out of data before the model is fully trained.
You then need to start reusing data, making additional passes through the dataset.
This lets you train models with smaller amounts of data, but the more epochs you
use, the more likely you are to end up with an overfit model.

Let’s now evaluate the performance of the trained model. In order to evaluate how
well a model works, it is necessary to specify a metric. The DeepChem class
dc.metrics.Metric provides a general way to specify metrics for models. For the
Tox21 datasets, the ROC AUC score is a useful metric, so let’s do our analysis using it.
However, note a subtlety here: there are multiple Tox21 tasks. Which one do we com‐
pute the ROC AUC on? A good tactic is to compute the mean ROC AUC score across
all tasks. Luckily, it’s easy to do this:

metric = dc.metrics.Metric(dc.metrics.roc_auc_score, np.mean)

Since we’ve specified np.mean, the mean of the ROC AUC scores across all tasks will
be reported. DeepChem models support the evaluation function model.evaluate(),
which evaluates the performance of the model on a given dataset and metric:

ROC AUC

We want to classify molecules as toxic or nontoxic, but the model
outputs continuous numbers, not discrete predictions. In practice,
you pick a threshold value and predict that a molecule is toxic
whenever the output is greater than the threshold. A low threshold
will produce many false positives (predicting a safe molecule is
actually toxic). A higher threshold will give fewer false positives but
more false negatives (incorrectly predicting that a toxic molecule is
safe).
The receiver operating characteristic (ROC) curve is a convenient
way to visualize this trade-off. You try many different threshold
values, then plot a curve of the true positive rate versus the false
positive rate as the threshold is varied. An example is shown in
Figure 3-1.
The ROC AUC is the total area under the ROC curve. The area
under the curve (AUC) provides an indication of the model’s ability
to distinguish different classes. If there exists any threshold value
for which every sample is classified correctly, the ROC AUC score
is 1. At the other extreme, if the model outputs completely random
values unrelated to the true classes, the ROC AUC score is 0.5. This
makes it a useful number for summarizing how well a classifier
works. It’s just a heuristic, but it’s a popular one.

Training a Model to Predict Toxicity of Molecules | 31

train_scores = model.evaluate(train_dataset, [metric], transformers)
test_scores = model.evaluate(test_dataset, [metric], transformers)

Now that we’ve calculated the scores, let’s take a look!

In : print(train_scores)
...: print(test_scores)
Out
{'mean-roc_auc_score': 0.9659541853946179}
{'mean-roc_auc_score': 0.7915464001982299}

Notice that our score on the training set (0.96) is much better than our score on the
test set (0.79). This shows the model has been overfit. The test set score is the one we
really care about. These numbers aren’t the best possible on this dataset—at the time
of writing, the state of the art ROC AUC scores for the Tox21 dataset are a little under
0.9—but they aren’t bad at all for an out-of-the-box system. The complete ROC curve
for one of the 12 tasks is shown in Figure 3-1.

Figure 3-1. The ROC curve for one of the 12 tasks. The dotted diagonal line shows what
the curve would be for a model that just guessed at random. The actual curve is consis‐
tently well above the diagonal, showing that we are doing much better than random
guessing.

Case Study: Training an MNIST Model
In the previous section, we covered the basics of training a machine learning model
with DeepChem. However, we used a premade model class, dc.models.Multitask
Classifier. Sometimes you may want to create a new deep learning architecture
instead of using a preconfigured one. In this section, we discuss how to train a convo‐
lutional neural network on the MNIST digit recognition dataset. Instead of using a
premade architecture like in the previous example, this time we will specify the full
deep learning architecture ourselves. To do so, we will introduce the

32 | Chapter 3: Machine Learning with DeepChem

dc.models.TensorGraph class, which provides a framework for building deep archi‐
tectures in DeepChem.

When Do Canned Models Make Sense?

In this section, we’re going to use a custom architecture on MNIST.
In the previous example, we used a “canned” (that is, predefined)
architecture instead. When does each alternative make sense? If
you have a well-debugged canned architecture for a problem, it will
likely make sense to use it. But if you’re working on a new dataset
where no such architecture has been put together, you’ll often have
to create a custom architecture. It’s important to be familiar with
using both canned and custom architectures, so we’ve included an
example of each in this chapter.

The MNIST Digit Recognition Dataset
The MNIST digit recognition dataset (see Figure 3-2) requires the construction of a
machine learning model that can learn to classify handwritten digits correctly. The
challenge is to classify digits from 0 to 9 given 28 × 28-pixel black and white images.
The dataset contains 60,000 training examples and a test set of 10,000 examples.

Figure 3-2. Samples drawn from the MNIST handwritten digit recognition dataset.
(Source: GitHub)

The MNIST dataset is not particularly challenging as far as machine learning prob‐
lems go. Decades of research have produced state-of-the-art algorithms that achieve

Case Study: Training an MNIST Model | 33

https://github.com/mnielsen/rmnist/blob/master/data/rmnist_10.png

close to 100% test set accuracy on this dataset. As a result, the MNIST dataset is no
longer suitable for research work, but it is a good tool for pedagogical purposes.

Isn’t DeepChem Just for the Life Sciences?

As we mentioned earlier in the chapter, it’s entirely feasible to use
other deep learning packages for life science applications. Similarly,
it’s possible to build general machine learning systems using Deep‐
Chem. Although building a movie recommendation system in
DeepChem might be trickier than it would be with more special‐
ized tools, it would be quite feasible to do so. And for good reason:
there have been multiple studies looking into the use of recommen‐
dation system algorithms for use in molecular binding prediction.
Machine learning architectures used in one field tend to carry over
to other fields, so it’s important to retain the flexibility needed for
innovative work.

A Convolutional Architecture for MNIST
DeepChem uses the TensorGraph class to construct nonstandard deep learning archi‐
tectures. In this section, we will walk through the code required to construct the con‐
volutional architecture shown in Figure 3-3. It begins with two convolutional layers
to identify local features within the image. They are followed by two fully connected
layers to predict the digit from those local features.

Figure 3-3. An illustration of the architecture that we will construct in this section for
processing the MNIST dataset.

To begin, execute the following commands to download the raw MNIST data files
and store them locally:

mkdir MNIST_data
cd MNIST_data
wget http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
cd ..

34 | Chapter 3: Machine Learning with DeepChem

Let’s now load these datasets:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

We’re going to process this raw data into a format suitable for analysis by DeepChem.
Let’s start with the necessary imports:

import deepchem as dc
import tensorflow as tf
import deepchem.models.tensorgraph.layers as layers

The submodule deepchem.models.tensorgraph.layers contains a collection of “lay‐
ers.” These layers serve as building blocks of deep architectures and can be composed
to build new deep learning architectures. We will demonstrate how layer objects are
used shortly. Next, we construct NumpyDataset objects that wrap the MNIST training
and test datasets:

train_dataset = dc.data.NumpyDataset(mnist.train.images, mnist.train.labels)
test_dataset = dc.data.NumpyDataset(mnist.test.images, mnist.test.labels)

Note that although there wasn’t originally a test dataset defined, the input_data()
function from TensorFlow takes care of separating out a proper test dataset for our
use. With the training and test datasets in hand, we can now turn our attention
towards defining the architecture for the MNIST convolutional network.

The key concept this is based on is that layer objects can be composed to build new
models. As we discussed in the previous chapter, each layer takes input from previous
layers and computes an output that can be passed to subsequent layers. At the very
start, there are input layers that take in features and labels. At the other end are out‐
put layers that return the results of the performed computation. In this example, we
will compose a sequence of layers in order to construct an image-processing convolu‐
tional network. We start by defining a newTensorGraphobject:

model = dc.models.TensorGraph(model_dir='mnist')

The model_dir option specifies a directory where the model’s parameters should be
saved. You can omit this, as we did in the previous example, but then the model will
not be saved. As soon as the Python interpreter exits, all your hard work training the
model will be thrown out! Specifying a directory allows you to reload the model later
and make new predictions with it.

Note that since TensorGraph inherits from Model, this object is an instance of
dc.models.Model and supports the same fit() and evaluate() functions we saw
previously:

In : isinstance(model, dc.models.Model)
Out: True

Case Study: Training an MNIST Model | 35

We haven’t added anything to model yet, so our model isn’t likely to be very interest‐
ing. Let’s start by adding some inputs for features and labels by using the Feature and
Label classes:

feature = layers.Feature(shape=(None, 784))
label = layers.Label(shape=(None, 10))

MNIST contains images of size 28 × 28. When flattened, these form feature vectors of
length 784. The labels have a second dimension of 10 since there are 10 possible digit
values, and the vector is one-hot encoded. Note that None is used as an input dimen‐
sion. In systems that build on TensorFlow, the value None often encodes the ability for
a given layer to accept inputs that have any size in that dimension. Put another way,
our object feature is capable of accepting inputs of shape (20, 784) and (97, 784)
with equal facility. In this case, the first dimension corresponds to the batch size, so
our model will be able to accept batches with any number of samples.

One-Hot Encoding

The MNIST dataset is categorical. That is, objects belong to one of
a finite list of potential categories. In this case, these categories are
the digits 0 through 9. How can we feed these categories into a
machine learning system? One obvious answer would be to simply
feed in a single number that takes values from 0 through 9. How‐
ever, for a variety of technical reasons, this encoding often doesn’t
seem to work well. The alternative that people commonly use is to
one-hot encode. Each label for MNIST is a vector of length 10 in
which a single element is set to 1, and all others are set to 0. If the
nonzero value is at the 0th index, then the label corresponds to the
digit 0. If the nonzero value is at the 9th index, then the label corre‐
sponds to the digit 9.

In order to apply convolutional layers to our input, we need to convert our flat feature
vectors into matrices of shape (28, 28). To do this, we will use a Reshape layer:

make_image = layers.Reshape(shape=(None, 28, 28), in_layers=feature)

Here again the value None indicates that arbitrary batch sizes can be handled. Note
that we have a keyword argument in_layers=feature. This indicates that the
Reshape layer takes our previous Feature layer, feature, as input. Now that we have
successfully reshaped the input, we can pass it through to the convolutional layers:

conv2d_1 = layers.Conv2D(num_outputs=32, activation_fn=tf.nn.relu,
 in_layers=make_image)
conv2d_2 = layers.Conv2D(num_outputs=64, activation_fn=tf.nn.relu,
 in_layers=conv2d_1)

36 | Chapter 3: Machine Learning with DeepChem

Here, the Conv2D class applies a 2D convolution to each sample of its input, then
passes it through a rectified linear unit (ReLU) activation function. Note how in_lay
ers is used to pass along previous layers as inputs to succeeding layers. We want to
end by applying Dense (fully connected) layers to the outputs of the convolutional
layer. However, the output of Conv2D layers is 2D, so we will first need to apply a Flat
ten layer to flatten our input to one dimension (more precisely, the Conv2D layer pro‐
duces a 2D output for each sample, so its output has three dimensions; the Flatten
layer collapses this to a single dimension per sample, or two dimensions in total):

flatten = layers.Flatten(in_layers=conv2d_2)
dense1 = layers.Dense(out_channels=1024, activation_fn=tf.nn.relu,
 in_layers=flatten)
dense2 = layers.Dense(out_channels=10, activation_fn=None, in_layers=dense1)

The out_channels argument in a Dense layer specifies the width of the layer. The first
layer outputs 1,024 values per sample, but the second layer outputs 10 values, corre‐
sponding to our 10 possible digit values. We now want to hook this output up to a
loss function, so we can train the output to accurately predict classes. We will use the
SoftMaxCrossEntropy loss to perform this form of training:

smce = layers.SoftMaxCrossEntropy(in_layers=[label, dense2])
loss = layers.ReduceMean(in_layers=smce)
model.set_loss(loss)

Note that the SoftMaxCrossEntropy layer accepts both the labels and the output of
the last Dense layer as inputs. It computes the value of the loss function for every
sample, so we then need to average over all samples to obtain the final loss. This is
done with the ReduceMean layer, which we set as our model’s loss function by calling
model.set_loss().

SoftMax and SoftMaxCrossEntropy
You often want a model to output a probability distribution. For MNIST, we want to
output the probability that a given sample represents each of the 10 digits. Every out‐
put must be positive, and they must sum to 1. An easy way to achieve this is to let the
model compute arbitrary numbers, then pass them through the confusingly named
softmax function:

σi x = e
xi

∑ j e
x j

The exponential in the numerator ensures that all values are positive, and the sum in the
denominator ensures they add up to 1. If one element of x is much larger than the others,

Case Study: Training an MNIST Model | 37

the corresponding output element is very close to 1 and all the other outputs are very
close to 0.

SoftMaxCrossEntropy first uses a softmax function to convert the outputs to proba‐
bilities, then computes the cross entropy of those probabilities with the labels.
Remember that the labels are one-hot encoded: 1 for the correct class, 0 for all others.
You can think of that as a probability distribution! The loss is minimized when the
predicted probability of the correct class is as close to 1 as possible. These two opera‐
tions (softmax followed by cross entropy) often appear together, and computing them
as a single step turns out to be more numerically stable than performing them sepa‐
rately.

For numerical stability, layers like SoftMaxCrossEntropy compute in log probabili‐
ties. We’ll need to transform the output with a SoftMax layer to obtain per-class out‐
put probabilities. We’ll add this output to model with model.add_output():

output = layers.SoftMax(in_layers=dense2)
model.add_output(output)

We can now train the model using the same fit() function we called in the previous
section:

model.fit(train_dataset, nb_epoch=10)

Note that this method call might take some time to execute on a standard laptop! If
the function is not executing quickly enough, try using nb_epoch=1. The results will
be worse, but you will be able to complete the rest of this chapter more quickly.

Let’s define our metric this time to be accuracy, the fraction of labels that are correctly
predicted:

metric = dc.metrics.Metric(dc.metrics.accuracy_score)

We can then compute the accuracy using the same computation as before:

train_scores = model.evaluate(train_dataset, [metric])
test_scores = model.evaluate(test_dataset, [metric])

This produces excellent performance: the accuracy is 0.999 on the training set, and
0.991 on the test set. Our model identifies more than 99% of the test set samples cor‐
rectly.

38 | Chapter 3: Machine Learning with DeepChem

Try to Get Access to a GPU

As you saw in this chapter, deep learning code can run pretty
slowly! Training a convolutional neural network on a good laptop
can take more than an hour to complete. This is because this code
depends on a large number of linear algebraic operations on image
data. Most CPUs are not well equipped to perform these types of
computations.
If possible, try to get access to a modern graphics processing unit.
These cards were originally developed for gaming, but are now
used for many types of numeric computations. Most modern deep
learning workloads will run much faster on GPUs. The examples
you’ll see in this book will be easier to complete with GPUs as well.
If it’s not feasible to get access to a GPU, don’t worry. You’ll still be
able to complete the exercises in this book—they might just take a
little longer (you might have to grab a coffee or read a book while
you wait for the code to finish running).

Conclusion
In this chapter, you’ve learned how to use the DeepChem library to implement some
simple machine learning systems. In the remainder of this book, we will continue to
use DeepChem as our library of choice, so don’t worry if you don’t have a strong
grasp of the fundamentals of the library yet. There will be plenty more examples
coming.

In subsequent chapters, we will begin to introduce the basic concepts needed to do
effective machine learning on life science datasets. In the next chapter, we will intro‐
duce you to machine learning on molecules.

Conclusion | 39

CHAPTER 4

Machine Learning for Molecules

This chapter covers the basics of performing machine learning on molecular data.
Before we dive into the chapter, it might help for us to briefly discuss why molecular
machine learning can be a fruitful subject of study. Much of modern materials science
and chemistry is driven by the need to design new molecules that have desired prop‐
erties. While significant scientific work has gone into new design strategies, much
random search is sometimes still needed to construct interesting molecules. The
dream of molecular machine learning is to replace such random experimentation
with guided search, where machine-learned predictors can propose which new mole‐
cules might have desired properties. Such accurate predictors could enable the cre‐
ation of radically new materials and chemicals with useful properties.

This dream is compelling, but how can we get started on this path? The first step is to
construct technical methods for transforming molecules into vectors of numbers that
can then be passed to learning algorithms. Such methods are called molecular featuri‐
zations. We will cover a number of them in this chapter, and more in the next chap‐
ter.Molecules are complex entities, and researchers have developed a host of different
techniques for featurizing them. These representations include chemical descriptor
vectors, 2D graph representations, 3D electrostatic grid representations, orbital basis
function representations, and more.

Once featurized, a molecule still needs to be learned from. We will review some algo‐
rithms for learning functions on molecules, including simple fully connected net‐
works as well as more sophisticated techniques like graph convolutions. We’ll also
describe some of the limitations of graph convolutional techniques, and what we
should and should not expect from them. We’ll end the chapter with a molecular
machine learning case study on an interesting dataset.

41

What Is a Molecule?
Before we dive into molecular machine learning in depth, it will be useful to review
what exactly a molecule is. This question sounds a little silly, since molecules like H2O
and CO2 are introduced to even young children. Isn’t the answer obvious? The fact is,
though, that for the vast majority of human existence, we had no idea that molecules
existed at all. Consider a thought experiment: how would you convince a skeptical
alien that entities called molecules exist? The answer turns out to be quite sophistica‐
ted. You might, for example, need to break out a mass spectrometer!

Mass Spectroscopy

Identifying the molecules that are present in a given sample can be
quite challenging. The most popular technique at present relies on
mass spectroscopy. The basic idea of mass spectroscopy is to bom‐
bard a sample with electrons. This bombardment shatters the mol‐
ecules into fragments. These fragments typically ionize—that is,
pick up or lose electrons to become charged. These charged frag‐
ments are propelled by an electric field which separates them based
on their mass-to-charge ratio. The spread of detected charged frag‐
ments is called the spectrum. Figure 4-1 illustrates this process.
From the collection of detected fragments, it is often possible to
identify the precise molecules that were in the original sample.
However, this process is still lossy and difficult. A number of
researchers are actively researching techniques to improve mass
spectroscopy with deep learning algorithms to ease the identifica‐
tion of the original molecules from the detected charged spectrum.
Note the complexity of performing this detection! Molecules are
complicated entities that are tricky to pin down precisely.

For the sake of getting started, let’s presume a definition of a molecule as a group of
atoms joined together by physical forces. Molecules are the smallest fundamental unit
of a chemical compound that can take part in a chemical reaction. Atoms in a mole‐
cule are connected with one another by chemical bonds, which hold them together
and restrict their motion relative to each other. Molecules come in a huge range of
sizes, from just a few atoms up to many thousands of atoms. Figure 4-2 provides a
simple depiction of a molecule in this model.

42 | Chapter 4: Machine Learning for Molecules

Figure 4-1. A simple schematic of a mass spectrometer. (Source: Wikimedia.)

Figure 4-2. A simple representation of a caffeine molecule as a “ball-and-stick” diagram.
Atoms are represented as colored balls (black is carbon, red is oxygen, blue is nitrogen,
white is hydrogen) joined by sticks which represent chemical bonds.

What Is a Molecule? | 43

https://commons.wikimedia.org/wiki/File:Mass_Spectrometer_Schematic.svg

With this basic description in hand, we’ll spend the next couple of sections diving
into more detail about various aspects of molecular chemistry. It’s not critical that you
get all of these concepts on your first reading of this chapter, but it can be useful to
have some basic knowledge of the chemical landscape at hand.

Molecules Are Dynamic, Quantum Entities

We’ve just provided a simplistic description of molecules in terms
of atoms and bonds. It’s very important to keep in the back of your
mind that there’s a lot more going on within any molecule. For one,
molecules are dynamic entities, so all the atoms within a given
molecule are in rapid motion with respect to one another. The
bonds themselves are stretching back and forth and perhaps oscil‐
lating in length rapidly. It’s quite common for atoms to rapidly
break off from and rejoin molecules. We’ll see a bit more about the
dynamic nature of molecules shortly, when we discuss molecular
conformations.
Even more strangely, molecules are quantum. There are a lot of lay‐
ers to saying that an entity is quantum, but as a simple description,
it’s important to note that “atoms” and “bonds” are much less well
defined than a simple ball-and-stick diagram might imply. There’s a
lot of fuzziness in the definitions here. It’s not important that you
grasp these complexities at this stage, but remember that our depic‐
tions of molecules are very approximate. This can have practical
relevance, since some learning tasks may require describing mole‐
cules with different depictions than others.

What Are Molecular Bonds?
It may have been a while since you studied basic chemistry, so we will spend time
reviewing basic chemical concepts here and there. The most basic question is, what is
a chemical bond?

The molecules that make up everyday life are made of atoms, often very large num‐
bers of them. These atoms are joined together by chemical bonds. These bonds essen‐
tially “glue” together atoms by their shared electrons. There are many different types
of molecular bonds, including covalent bonds and several types of noncovalent
bonds.

Covalent bonds
Covalent bonds involve sharing electrons between two atoms, such that the same
electrons spend time around both atoms (Figure 4-3). In general, covalent bonds are
the strongest type of chemical bond. They are formed and broken in chemical reac‐
tions. Covalent bonds tend to be very stable: once they form, it takes a lot of energy to

44 | Chapter 4: Machine Learning for Molecules

break them, so the atoms can remain bonded for a very long time. This is why mole‐
cules behave as distinct objects rather than loose collections of unrelated atoms. In
fact, covalent bonds are what define molecules: a molecule is a set of atoms joined by
covalent bonds.

Figure 4-3. Left: two atomic nuclei, each surrounded by a cloud of electrons. Right: as the
atoms come close together, the electrons start spending more time in the space between
the nuclei. This attracts the nuclei together, forming a covalent bond between the atoms.

Noncovalent bonds
Noncovalent bonds don’t involve the direct sharing of electrons between atoms, but
they do involve weaker electromagnetic interactions. Since they are not as strong as
covalent bonds, they are more ephemeral, constantly breaking and reforming. Non‐
covalent bonds do not “define” molecules in the same sense that covalent bonds do,
but they have a huge effect on determining the shapes molecules take on and the ways
different molecules associate with each other.

“Noncovalent bonds” is a generic term covering several different types of interac‐
tions. Some examples of noncovalent bonds include hydrogen bonds (Figure 4-4),
salt bridges, pi-stacking, and more. These types of interactions often play crucial roles
in drug design, since most drugs interact with biological molecules in the human
body through noncovalent interactions.

Figure 4-4. Water molecules have strong hydrogen bonding interactions between hydro‐
gen and oxygen on adjacent molecules. A strong network of hydrogen bonds contributes
in part to water’s power as a solvent. (Source: Wikimedia.)

What Is a Molecule? | 45

https://commons.wikimedia.org/wiki/File:SimpleBayesNet.svg

We’ll run into each of these types of bonds at various points in the book. In this chap‐
ter, we will mostly deal with covalent bonds, but noncovalent interactions will
become much more crucial when we start studying some biophysical deep models.

Molecular Graphs
A graph is a mathematical data structure made up of nodes connected together by
edges (Figure 4-5). Graphs are incredibly useful abstractions in computer science. In
fact, there is a whole branch of mathematics called graph theory dedicated to under‐
standing the properties of graphs and finding ways to manipulate and analyze them.
Graphs are used to describe everything from the computers that make up a network,
to the pixels that make up an image, to actors who have appeared in movies with
Kevin Bacon.

Figure 4-5. An example of a mathematical graph with six nodes connected by edges.
(Source: Wikimedia.)

Importantly, molecules can be viewed as graphs as well (Figure 4-6). In this descrip‐
tion, the atoms are the nodes in the graph, and the chemical bonds are the edges. Any
molecule can be converted into a corresponding molecular graph.

Figure 4-6. An example of converting a benzene molecule into a molecular graph. Note
that atoms are converted into nodes and chemical bonds into edges.

In the remainder of this chapter, we will repeatedly convert molecules into graphs in
order to analyze them and learn to make predictions about them.

46 | Chapter 4: Machine Learning for Molecules

https://commons.wikimedia.org/wiki/File:6n-graf.svg

Molecular Conformations
A molecular graph describes the set of atoms in a molecule and how they are bonded
together. But there is another very important thing we need to know: how the atoms
are positioned relative to each other in 3D space. This is called the molecule’s confor‐
mation.

Atoms, bonds, and conformation are related to each other. If two atoms are cova‐
lently bonded, that tends to fix the distance between them, strongly restricting the
possible conformations. The angles formed by sets of three or four bonded atoms are
also often restricted. Sometimes there will be whole clusters of atoms that are com‐
pletely rigid, all moving together as a single unit. But other pieces of molecules are
flexible, allowing atoms to move relative to each other. For example, many (but not
all) covalent bonds allow the groups of atoms they connect to freely rotate around the
axis of the bond. This lets the molecule take on many different conformations.

Figure 4-7 shows a very popular molecule: sucrose, also known as table sugar. It is
shown both as a 2D chemical structure and as a 3D conformation. Sucrose consists of
two rings linked together. Each of the rings is fairly rigid, so its shape changes very
little over time. But the linker connecting them is much more flexible, allowing the
rings to move relative to each other.

Figure 4-7. Sucrose, represented as a 3D conformation and a 2D chemical structure.
(Adapted from Wikimedia images (Wikimedia and Wikipedia.)

As molecules get larger, the number of feasible conformations they can take grows
enormously. For large macromolecules such as proteins (Figure 4-8), computationally
exploring the set of possible conformations currently requires very expensive simula‐
tions.

What Is a Molecule? | 47

https://commons.wikimedia.org/wiki/File:Sucrose-3D-balls.png
https://en.wikipedia.org/wiki/File:Saccharose2.svg

Figure 4-8. A conformation of bacteriorhodopsin (used to capture light energy) rendered
in 3D. Protein conformations are particularly complex, with multiple 3D geometric
motifs, and serve as a good reminder that molecules have geometry in addition to their
chemical formulas. (Source: Wikimedia.)

Chirality of Molecules
Some molecules (including many drugs) come in two forms that are mirror images of
each other. This is called chirality. A chiral molecule has both a “right-handed” form
(also known as the “R” form) and a “left-handed” form (also known as the “S” form),
as illustrated in Figure 4-9.

Figure 4-9. Axial chirality of a spiro compound (a compound made up of two or more
rings joined together). Note that the two chiral variants are respectively denoted as “R”
and “S.” This convention is widespread in the chemistry literature.

Chirality is very important, and also a source of much frustration both for laboratory
chemists and computational chemists. To begin with, the chemical reactions that pro‐
duce chiral molecules often don’t distinguish between the forms, producing both
chiralities in equal amounts. (These products are called racemic mixtures.) So if you
want to end up with just one form, your manufacturing process immediately
becomes more complicated. In addition, many physical properties are identical for
both chiralities, so many experiments can’t distinguish between chiral versions of a

48 | Chapter 4: Machine Learning for Molecules

https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/1M0K.png/480px-1M0K.png

given molecule. The same is true of computational models. For example, both chirali‐
ties have identical molecular graphs, so any machine learning model that depends
only on the molecular graph will be unable to distinguish between them.

This wouldn’t matter so much if the two forms behaved identically in practice, but
that often is not the case. It is possible for the two chiral forms of a drug to bind to
totally different proteins, and to have very different effects in your body. In many
cases, only one form of a drug has the desired therapeutic effect. The other form just
produces extra side effects without having any benefit.

One specific example of the differing effects of chiral compounds is the drug thalido‐
mide, which was prescribed as a sedative in the 1950s and 1960s. This drug was sub‐
sequently available over the counter as a treatment for nausea and morning sickness
associated with pregnancy. The R form of thalidomide is an effective sedative, while
the S form is teratogenic and has been shown to cause severe birth defects. These dif‐
ficulties are further compounded by the fact that thalidomide interconverts, or race‐
mizes, between the two different forms in the body.

Featurizing a Molecule
With these descriptions of basic chemistry in hand, how do we get started with featu‐
rizing molecules? In order to perform machine learning on molecules, we need to
transform them into feature vectors that can be used as inputs to models. In this sec‐
tion, we will discuss the DeepChem featurization submodule dc.feat, and explain
how to use it to featurize molecules in a variety of fashions.

SMILES Strings and RDKit
SMILES is a popular method for specifying molecules with text strings. The acronym
stands for “Simplified Molecular-Input Line-Entry System”, which is sufficiently
awkward-sounding that someone must have worked hard to come up with it. A
SMILES string describes the atoms and bonds of a molecule in a way that is both con‐
cise and reasonably intuitive to chemists. To nonchemists, these strings tend to look
like meaningless patterns of random characters. For example, “OCCc1c(C)[n+]
(cs1)Cc2cnc(C)nc2N” describes the important nutrient thiamine, also known as vita‐
min B1.

DeepChem uses SMILES strings as its format for representing molecules inside data‐
sets. There are some deep learning models that directly accept SMILES strings as
their inputs, attempting to learn to identify meaningful features in the text represen‐
tation. But much more often, we first convert the string into a different representa‐
tion (or featurize it) better suited to the problem at hand.

DeepChem depends on another open source chemoinformatics package, RDKit, to
facilitate its handling of molecules. RDKit provides lots of features for working with

Featurizing a Molecule | 49

SMILES strings. It plays a central role in converting the strings in datasets to molecu‐
lar graphs and the other representations described below.

Extended-Connectivity Fingerprints
Chemical fingerprints are vectors of 1s and 0s that represent the presence or absence
of specific features in a molecule. Extended-connectivity fingerprints (ECFPs) are a
class of featurizations that combine several useful features. They take molecules of
arbitrary size and convert them into fixed-length vectors. This is important because
lots of models require their inputs to all have exactly the same size. ECFPs let you
take molecules of many different sizes and use them all with the same model. ECFPs
are also very easy to compare. You can simply take the fingerprints for two molecules
and compare corresponding elements. The more elements that match, the more simi‐
lar the molecules are. Finally, ECFPs are fast to compute.

Each element of the fingerprint vector indicates the presence or absence of a particu‐
lar molecular feature, defined by some local arrangement of atoms. The algorithm
begins by considering every atom independently and looking at a few properties of
the atom: its element, the number of covalent bonds it forms, etc. Each unique com‐
bination of these properties is a feature, and the corresponding elements of the vector
are set to 1 to indicate their presence. The algorithm then works outward, combining
each atom with all the ones it is bonded to. This defines a new set of larger features,
and the corresponding elements of the vector are set. The most common variant of
this technique is the ECFP4 algorithm, which allows for sub-fragments to have a
radius of two bonds around a central atom.

The RDKit library provides utilities for computing ECFP4 fingerprints for molecules.
DeepChem provides convenient wrappers around these functions. The
dc.feat.CircularFingerprint class inherits from Featurizer and provides a stan‐
dard interface to featurize molecules:

smiles = ['C1CCCCC1', 'O1CCOCC1'] # cyclohexane and dioxane
mols = [Chem.MolFromSmiles(smile) for smile in smiles]
feat = dc.feat.CircularFingerprint(size=1024)
arr = feat.featurize(mols)
arr is a 2-by-1024 array containing the fingerprints for
the two molecules

ECFPs do have one important disadvantage: the fingerprint encodes a large amount
of information about the molecule, but some information does get lost. It is possible
for two different molecules to have identical fingerprints, and given a fingerprint, it is
impossible to uniquely determine what molecule it came from.

50 | Chapter 4: Machine Learning for Molecules

Molecular Descriptors
An alternative line of thought holds that it’s useful to describe molecules with a set of
physiochemical descriptors. These usually correspond to various computed quantities
that describe the molecule’s structure. These quantities, such as the log partition coef‐
ficient or the polar surface area, are often derived from classical physics or chemistry.
The RDKit package computes many such physical descriptors on molecules. The
DeepChem featurizer dc.feat.RDKitDescriptors() provides a simple way to per‐
form the same computations:

feat = dc.feat.RDKitDescriptors()
arr = feat.featurize(mols)
arr is a 2-by-111 array containing properties of the
two molecules

This featurization is obviously more useful for some problems than others. It will
tend to work best for predicting things that depend on relatively generic properties of
the molecules. It is unlikely to work for predicting properties that depend on the
detailed arrangement of atoms.

Graph Convolutions
The featurizations described in the preceding section were designed by humans. An
expert thought carefully about how to represent molecules in a way that could be
used as input to machine learning models, then coded the representation by hand.
Can we instead let the model figure out for itself the best way to represent molecules?
That is what machine learning is all about, after all: instead of designing a featuriza‐
tion ourselves, we can try to learn one automatically from the data.

As an analogy, consider a convolutional neural network for image recognition. The
input to the network is the raw image. It consists of a vector of numbers for each
pixel, for example the three color components. This is a very simple, totally generic
representation of the image. The first convolutional layer learns to recognize simple
patterns such as vertical or horizontal lines. Its output is again a vector of numbers
for each pixel, but now it is represented in a more abstract way. Each number repre‐
sents the presence of some local geometric feature.

The network continues through a series of layers. Each one outputs a new representa‐
tion of the image that is more abstract than the previous layer’s representation, and
less closely connected to the raw color components. And these representations are
automatically learned from the data, not designed by a human. No one tells the model
what patterns to look for to identify whether the image contains a cat. The model fig‐
ures that out by itself through training.

Graph convolutional networks take this same idea and apply it to graphs. Just as a reg‐
ular CNN begins with a vector of numbers for each pixel, a graph convolutional

Graph Convolutions | 51

network begins with a vector of numbers for each node and/or edge. When the graph
represents a molecule, those numbers could be high-level chemical properties of each
atom, such as its element, charge, and hybridization state. Just as a regular convolu‐
tional layer computes a new vector for each pixel based on a local region of its input,
a graph convolutional layer computes a new vector for each node and/or edge. The
output is computed by applying a learned convolutional kernel to each local region of
the graph, where “local” is now defined in terms of edges between nodes. For exam‐
ple, it might compute an output vector for each atom based on the input vector for
that same atom and any other atoms it is directly bonded to.

That is the general idea. When it comes to the details, many different variations have
been proposed. Fortunately, DeepChem includes implementations of lots of those
architectures, so you can try them out even without understanding all the details.
Examples include graph convolutions (GraphConvModel), Weave models (WeaveMo
del), message passing neural networks (MPNNModel), deep tensor neural networks
(DTNNModel), and more.

Graph convolutional networks are a powerful tool for analyzing molecules, but they
have one important limitation: the calculation is based solely on the molecular graph.
They receive no information about the molecule’s conformation, so they cannot hope
to predict anything that is conformation-dependent. This makes them most suitable
for small, mostly rigid molecules. In the next chapter we will discuss methods that are
more appropriate for large, flexible molecules that can take on many conformations.

Training a Model to Predict Solubility
Let’s put all the pieces together and train a model on a real chemical dataset to predict
an important molecular property. First we’ll load the data:

tasks, datasets, transformers = dc.molnet.load_delaney(featurizer='GraphConv')
train_dataset, valid_dataset, test_dataset = datasets

This dataset contains information about solubility, which is a measure of how easily a
molecule dissolves in water. This property is vitally important for any chemical you
hope to use as a drug. If it does not dissolve easily, getting enough of it into a patient’s
bloodstream to have a therapeutic effect may be impossible. Medicinal chemists
spend a lot of time modifying molecules to try to increase their solubility.

Notice that we specify the option featurizer='GraphConv'. We are going to use a
graph convolutional model, and this tells MoleculeNet to transform the SMILES
string for each molecule into the format required by the model.

Now let’s construct and train the model:

model = GraphConvModel(n_tasks=1, mode='regression', dropout=0.2)
model.fit(train_dataset, nb_epoch=100)

52 | Chapter 4: Machine Learning for Molecules

We specify that there is only one task—that is to say, one output value (the solubility)
—for each sample. We also specify that this is a regression model, meaning that the
labels are continuous numbers and the model should try to reproduce them as accu‐
rately as possible. That is in contrast to a classification model, which tries to predict
which of a fixed set of classes each sample belongs to. To reduce overfitting, we spec‐
ify a dropout rate of 0.2, meaning that 20% of the outputs from each convolutional
layer will randomly be set to 0.

That’s all there is to it! Now we can evaluate the model and see how well it works. We
will use the Pearson correlation coefficient as our evaluation metric:

metric = dc.metrics.Metric(dc.metrics.pearson_r2_score)
print(model.evaluate(train_dataset, [metric], transformers))
print(model.evaluate(test_dataset, [metric], transformers))

This reports a correlation coefficient of 0.95 for the training set, and 0.83 for the test
set. Apparently it is overfitting a little bit, but not too badly. And a correlation coeffi‐
cient of 0.83 is quite respectable. Our model is successfully predicting the solubilities
of molecules based on their molecular structures!

Now that we have the model, we can use it to predict the solubilities of new mole‐
cules. Suppose we are interested in the following five molecules, specified as SMILES
strings:

smiles = ['COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C',
 'CCOC(=O)CC',
 'CSc1nc(NC(C)C)nc(NC(C)C)n1',
 'CC(C#C)N(C)C(=O)Nc1ccc(Cl)cc1',
 'Cc1cc2ccccc2cc1C']

To use these as inputs to the model, we must first use RDKit to parse the SMILES
strings, then use a DeepChem featurizer to convert them to the format expected by
the graph convolution:

from rdkit import Chem
mols = [Chem.MolFromSmiles(s) for s in smiles]
featurizer = dc.feat.ConvMolFeaturizer()
x = featurizer.featurize(mols)

Now we can pass them to the model and ask it to predict their solubilities:

predicted_solubility = model.predict_on_batch(x)

Training a Model to Predict Solubility | 53

MoleculeNet
We have now seen two datasets loaded from the molnet module: the Tox21 toxicity
dataset in the previous chapter, and the Delaney solubility dataset in this chapter.
MoleculeNet is a large collection of datasets useful for molecular machine learning.
As shown in Figure 4-10, it contains data on many sorts of molecular properties.
They range from low-level physical properties that can be calculated with quantum
mechanics up to very high-level information about interactions with a human body,
such as toxicity and side effects.

Figure 4-10. MoleculeNet hosts many different datasets from different molecular scien‐
ces. Scientists find it useful to predict quantum, physical chemistry, biophysical, and
physiological characteristics of molecules.

When developing new machine learning methods, you can use MoleculeNet as a col‐
lection of standard benchmarks to test your method on. At http://moleculenet.ai you
can view data on how well a collection of standard models perform on each of the
datasets, giving insight into how your own method compares to established techni‐
ques.

SMARTS Strings
In many commonly used applications, such as word processing, we need to search for
a particular text string. In cheminformatics, we encounter similar situations where we
want to determine whether atoms in a molecule match a particular pattern. There are
a number of use cases where this may arise:

• Searching a database of molecules to identify molecules containing a particular
substructure

• Aligning a set of molecules on a common substructure to improve visualization

54 | Chapter 4: Machine Learning for Molecules

http://moleculenet.ai

• Highlighting a substructure in a plot
• Constraining a substructure during a calculation

SMARTS is an extension of the SMILES language described previously that can be
used to create queries. One can think of SMARTS patterns as similar to regular
expressions used for searching text. For instance, when searching a filesystem, one
can specify a query like “foo*.bar”, which will match foo.bar, foo3.bar, and foolish.bar.
At the simplest level, any SMILES string can also be a SMARTS string. The SMILES
string “CCC” is also a valid SMARTS string and will match sequences of three adja‐
cent aliphatic carbon atoms. Let’s take a look at a code example showing how we can
define molecules from SMILES strings, display those molecules, and highlight the
atoms matching a SMARTS pattern.

First, we will import the necessary libraries and create a list of molecules from a list of
SMILES strings. Figure 4-11 shows the result:

from rdkit import Chem
from rdkit.Chem.Draw import MolsToGridImage

smiles_list = ["CCCCC","CCOCC","CCNCC","CCSCC"]
mol_list = [Chem.MolFromSmiles(x) for x in smiles_list]

Figure 4-11. Chemical structures generated from SMILES

Now we can see which SMILES strings match the SMARTS pattern “CCC”
(Figure 4-12):

query = Chem.MolFromSmarts("CCC")
match_list = [mol.GetSubstructMatch(query) for mol in
mol_list]
MolsToGridImage(mols=mol_list, molsPerRow=4,
highlightAtomLists=match_list)

MoleculeNet | 55

Figure 4-12. Molecules matching the SMARTS expression “CCC.”

There are a couple of things to note in this figure. The first is that the SMARTS
expression only matches the first structure. The other structures do not contain three
adjacent carbons. Note also that there are multiple ways that the SMARTS pattern
could match the first molecule in this figure—it could match three adjacent carbon
atoms by starting at the first, second, or third carbon atom. There are additional
functions in RDKit that will return all possible SMARTS matches, but we won’t cover
those now.

Additional wildcard characters can be used to match specific sets of atoms. As with
text, the “*” character can be used to match any atom. The SMARTS pattern “C*C”
will match an aliphatic carbon attached to any atom attached to another aliphatic car‐
bon (see Figure 4-13).

query = Chem.MolFromSmarts("C*C")
match_list = [mol.GetSubstructMatch(query) for mol in
mol_list]
MolsToGridImage(mols=mol_list, molsPerRow=4,
highlightAtomLists=match_list)

Figure 4-13. Molecules matching the SMARTS expression “C*C”.

The SMARTS syntax can be extended to only allow specific sets of atoms. For
instance, the string “C[C,O,N]C” will match carbon attached to carbon, oxygen, or
nitrogen, attached to another carbon (Figure 4-14):

query = Chem.MolFromSmarts("C[C,N,O]C")
match_list = [mol.GetSubstructMatch(query) for mol in
mol_list]

56 | Chapter 4: Machine Learning for Molecules

1 Daylight Chemical Information Systems, Inc. “Daylight Theory Manual.” http://www.daylight.com/
dayhtml/doc/theory/. 2011.

MolsToGridImage(mols=mol_list, molsPerRow=4,
highlightAtomLists=match_list)

Figure 4-14. Molecules matching the SMARTS expression “C[C,N,O]C”.

There is a lot more to SMARTS that is beyond the scope of this brief introduction.
Interested readers are urged to read the “Daylight Theory Manual” to get deeper
insight into SMILES and SMARTS.1 As we will see in Chapter 11, SMARTS can be
used to build up sophisticated queries that can identify molecules that may be prob‐
lematic in biological assays.

Conclusion
In this chapter, you’ve learned the basics of molecular machine learning. After a brief
review of basic chemistry, we explored how molecules have traditionally been repre‐
sented for computing systems. You also learned about graph convolutions, which are
a newer approach to modeling molecules in deep learning, and saw a complete work‐
ing example of how to use machine learning on molecules to predict an important
physical property. These techniques will serve as the foundations upon which later
chapters will build.

Conclusion | 57

http://www.daylight.com/dayhtml/doc/theory/
http://www.daylight.com/dayhtml/doc/theory/

CHAPTER 5

Biophysical Machine Learning

In this chapter, we will explore how to use deep learning for understanding biophysi‐
cal systems. In particular, we will explore in depth the problem of predicting how
small drug-like molecules bind to a protein of interest in the human body.

This problem is of fundamental interest in drug discovery. Modulating a single pro‐
tein in a targeted fashion can often have a significant therapeutic impact. The break‐
through cancer drug Imatinib tightly binds with BCR-ABL, for example, which is part
of the reason for its efficacy. For other diseases, it can be challenging to find a single
protein target with the same efficacy, but the abstraction remains useful nevertheless.
There are so many mechanisms at play in the human body that finding an effective
mental model can be crucial.

Drugs Don’t Just Target a Single Protein

As we’ve discussed, it can be extraordinarily useful to reduce the
problem of designing a drug for a disease to the problem of design‐
ing a drug that interacts tightly with a given protein. But it’s
extremely important to realize that in reality, any given drug is
going to interact with many different subsystems in the body. The
study of such multifaceted interactions is broadly called polyphar‐
macology.
At present, computational methods for dealing with polypharma‐
cology are still relatively undeveloped, so the gold standard for test‐
ing for polypharmacological effects remains animal and human
experimentation. As computational techniques mature, this state of
affairs may shift over the next few years.

Our goal therefore is to design learning algorithms that can effectively predict when a
given molecule is going to interact with a given protein. How can we do this? For

59

starters, we might borrow some of the techniques from the previous chapter on
molecular machine learning and try to create a protein-specific model. Such a model
would, given a dataset of molecules that either bind or don’t bind to a given protein,
learn to predict for new molecules whether they bind or not. This idea isn’t actually
terrible, but requires a good amount of data for the system at hand. Ideally, we’d have
an algorithm that could work without a large amount of data for a new protein.

The trick, it turns out, is to use the physics of the protein. As we will discuss in the
next section, quite a bit is known about the physical structure of protein molecules.
In particular, it’s possible to create snapshots of the 3D state of proteins using modern
experimental techniques. These 3D snapshots can be fed into learning algorithms and
used to predict binding. It’s also possible to take snapshots (better known as struc‐
tures) of the interaction of proteins with smaller molecules (often called ligands). If
this discussion seems abstract to you right now, don’t worry. You’ll be seeing plenty of
practical code in this chapter.

We’ll begin this chapter with a deeper overview of proteins and their function in biol‐
ogy. We will then shift into computer science and introduce some algorithms for
featurizing protein systems which can transform biophysical systems into vectors or
tensors for use in learning. In the last part of the chapter, we will work through an in-
depth case study on constructing a protein–ligand binding interaction model. For
experimentation,we will introduce the PDBBind dataset, which contains a collection
of experimentally determined protein–ligand structures. We will demonstrate how to
featurize this dataset with DeepChem. We will then build some models, both deep
and simpler, on these featurized datasets and study their performance.

Why Is It Called Biophysics?

It is often said that all of biology is based on chemistry, and all of
chemistry is based on physics. At first glance, biology and physics
may seem far removed from one another. But as we will discuss at
greater length later in this chapter, physical laws are at the heart of
all biological mechanisms. In addition, much of the study of pro‐
tein structure depends critically on the use of experimental techni‐
ques refined in physics. Manipulating nanoscale machines (for
that’s what proteins actually are) requires considerable physical
sophistication, on both the theoretical and the practical side.
It’s also interesting to note that the deep learning algorithms we will
discuss in this chapter bear significant similarities to deep learning
architectures used for studying systems from particle physics or for
physical simulations. Such topics are outside the scope of this book,
but we encourage interested readers to explore them further.

60 | Chapter 5: Biophysical Machine Learning

Protein Structures
Proteins are tiny machines that do most of the work in a cell. Despite their small size,
they can be very complicated. A typical protein is made of thousands of atoms
arranged in precise ways.

To understand any machine, you must know what parts it is made of and how they
are put together. You cannot hope to understand a car until you know it has wheels
on the bottom, an empty space in the middle to hold passengers, and doors through
which the passengers can enter and exit. The same is true of a protein. To understand
how it works, you must know exactly how it is put together.

Furthermore, you need to know how it interacts with other molecules. Few machines
operate in isolation. A car interacts with the passengers it carries, the road it drives
on, and the energy source that allows it to move. This applies to most proteins as
well. They act on molecules (for example, to catalyze a chemical reaction), are acted
upon by others (for example, to regulate their activity), and draw energy from still
others. All these interactions depend on the specific positioning of atoms in the two
molecules. To understand them, you must know how the atoms are arranged in 3D
space.

Unfortunately, you can’t just look at a protein under a microscope; they are far too
small for that. Instead, scientists have had to invent complex and ingenious methods
for determining the structures of proteins. At present there are three such methods:
X-ray crystallography, nuclear magnetic resonance (NMR for short), and cryo-electron
microscopy (cryo-EM for short).

X-ray crystallography is the oldest method, and still the most widely used. Roughly
90% of all known protein structures were determined with this method. Crystallogra‐
phy involves growing a crystal of the protein of interest (many molecules of the pro‐
tein all tightly packed together in a regular repeating pattern). X-rays are then shone
on the crystal, the scattered light is measured, and the results are analyzed to work
out the structure of the individual molecules. Despite its success, this method has
many limitations. It is slow and expensive even in the best cases. Many proteins do
not form crystals, making crystallography impossible. Packing the protein into a crys‐
tal may alter its structure, so the result might be different from its structure in a living
cell. Many proteins are flexible and can take on a range of structures, but crystallogra‐
phy only produces a single unmoving snapshot. But even with these limitations, it is a
remarkably powerful and important tool.

NMR is the second most common method. It operates on proteins in solution, so
there is no need to grow a crystal. This makes it an important alternative for proteins
that cannot be crystallized. Unlike crystallography, which produces a single fixed
snapshot, NMR produces an ensemble of structures representing the range of shapes
the protein can take on in solution. This is a very important benefit, since it gives

Protein Structures | 61

information about how the protein can move. Unfortunately, NMR has its own limi‐
tations. It requires a highly concentrated solution, so it is mostly limited to small,
highly soluble proteins.

In recent years, cryo-EM has emerged as a third option for determining protein
structures. It involves rapidly freezing protein molecules, then imaging them with an
electron microscope. Each image is far too low-resolution to make out the precise
details; but by combining many different images, one can produce a final structure
whose resolution is much higher than any individual electron microscope image.
After decades of steady improvements to the methods and technologies, cryo-EM has
finally begun to approach atomic resolution. Unlike crystallography and NMR, it
works for large proteins that do not crystallize. This will probably make it a very
important technique in the years to come.

The Protein Data Bank (PDB) is the primary repository for known protein struc‐
tures. At present it contains over 142,000 structures, like the one in Figure 5-1. That
may seem like a lot, but it is far less than we really want. The number of known pro‐
teins is orders of magnitude larger, with more being discovered all the time. For any
protein you want to study, there is a good chance that its structure is still unknown.
And you really want many structures for each protein, not just one. Many proteins
can exist in multiple functionally different states (for example, “active” and “inactive”
states), so you want to know the structure of each state. If a protein binds to other
molecules, you want a separate structure with the protein bound to each one so you
can see exactly how they bind. The PDB is a fantastic resource, but the field as a
whole is still in its “low data” stage. We have far less data than we want, and a major
challenge is figuring out how to make the most of what we have. That is likely to
remain true for decades.

62 | Chapter 5: Biophysical Machine Learning

https://www.rcsb.org/

Figure 5-1. A crystal structure of the CapD protein from Bacillus anthracis, the anthrax
pathogen. Determining the structures of bacterial proteins can be a powerful tool for
antibiotic design. More generally, identifying the structure of a therapeutically relevant
protein is one of the key steps in modern drug discovery.

Protein Sequences
So far in this chapter, we’ve primarily discussed protein structures, but we haven’t yet
said much about what proteins are made of atomically. Proteins are built out of fun‐
damental building blocks called amino acids. These amino acids are sets of molecules
that share a common core, but have different “side chains” attached (Figure 5-2).
These different side chains alter the behavior of the protein.

A protein is a chain of amino acids linked one to the next to the next (Figure 5-3).
The start of the amino acid chain is typically referred to as the N-terminus, while the
end of the chain is called the C-terminus. Small chains of amino acids are commonly
called peptides, while longer chains are called proteins. Peptides are too small to have
complex 3D structures, but the structures of proteins can be very complicated.

Protein Structures | 63

Figure 5-2. Amino acids are the building blocks of protein structures. This diagram rep‐
resents the chemical structures of a number of commonly seen amino acids. (Adapted
from Wikimedia.)

Figure 5-3. A chain of four amino acids, with the N-terminus on the left and the C-
terminus on the right. (Source: Wikipedia.)

It’s worth noting that while most proteins take a rigid shape, there are also intrinsi‐
cally disordered proteins which have regions that refuse to take rigid shapes
(Figure 5-4).

64 | Chapter 5: Biophysical Machine Learning

https://commons.wikimedia.org/wiki/File:Overview_proteinogenic_amino_acids-DE.svg
https://en.wikipedia.org/wiki/N-terminus#/media/File:Tetrapeptide_structural_formulae_v.1.png

Figure 5-4. A snapshot of the SUMO-1 protein. The central core of the protein has struc‐
ture, while the N-terminal and C-terminal regions are disordered. Intrinsically disor‐
dered proteins such as SUMO-1 are challenging to handle computationally.

In the remainder of this chapter, we will primarily deal with proteins that have rigid,
3D shapes. Dealing with floppy structures with no set shape is still challenging for
modern computational techniques.

Can’t We Predict 3D Protein Structure
Computationally?
After reading this section, you might wonder why we don’t use algorithms to directly
predict the structure of interesting protein molecules rather than depending on com‐
plex physical experiments. It’s a good question, and there have in fact been decades of
work on the computational prediction of protein structure.

There are two main approaches to predicting protein structures. The first is called
homology modeling. Protein sequences and structures are the product of billions of
years of evolution. If two proteins are near relatives (the technical term is “homo‐
logs”) that only recently diverged from each other, they probably have similar struc‐
tures. To predict a protein’s structure by homology modeling, you first look for a
homolog whose structure is already known, then try to adjust it based on differences
between the sequences of the two proteins. Homology modeling works reasonably
well for determining the overall shape of a protein, but it often gets details wrong.
And of course, it requires that you already know the structure of a homologous pro‐
tein.

The other main approach is physical modeling. Using knowledge of the laws of phys‐
ics, you try to explore many different conformations the protein might take on and
predict which one will be most stable. This method requires enormous amounts of
computing time. Until about a decade ago, it simply was impossible. Even today it is
only practical for small, fast-folding proteins. Furthermore, it requires physical

Protein Structures | 65

approximations to speed up the calculation, and those reduce the accuracy of the
result. Physical modeling will often predict the right structure, but not always.

A Short Primer on Protein Binding
We’ve discussed a good amount about protein structure so far in this chapter, but we
haven’t said much about how proteins interact with other molecules (Figure 5-5). In
practice, proteins often bind to small molecules. Sometimes that binding behavior is
central to the protein’s function: the main role for a given protein can involve binding
to particular molecules. For example, signaling transduction in cells often passes mes‐
sages via the mechanism of a protein binding to another molecule. Other times, the
molecule binding to the protein is foreign: possibly a drug we’ve created to manipu‐
late the protein, possibly a toxin that interferes with its function.

Figure 5-5. A signal transduced via a protein embedded in a cell’s membrane. (Source:
Wikimedia.)

Understanding the details of how, where, and when molecules bind to proteins is crit‐
ical to understanding their functions and developing drugs. If we can coopt the sig‐
naling mechanisms of cells in the human body, we can induce desired medical
responses in the body.

Protein binding involves lots of very specific interactions, which makes it hard to pre‐
dict computationally. A tiny change in the positions of just a few atoms can determine
whether or not a molecule binds to a protein. Furthermore, many proteins are flexi‐
ble and constantly moving. A protein might be able to bind a molecule when it’s in
certain conformations, but not when it’s in others. Binding in turn may cause further
changes to a protein’s conformation, and thus to its function.

In the remainder of this chapter, we will use the challenge of understanding protein
binding as a motivating computational example. We will delve in depth into current

66 | Chapter 5: Biophysical Machine Learning

https://simple.wikipedia.org/wiki/Signal_transduction#/media/File:The_External_Reactions_and_the_Internal_Reactions.jpg

deep learning and machine learning approaches for making predictions about bind‐
ing events.

Biophysical Featurizations
As we discussed in the previous chapter, one of the crucial steps in applying machine
learning to a new domain is figuring out how to transform (or featurize) training data
to a format suitable for learning algorithms. We’ve discussed a number of techniques
for featurizing individual small molecules. Could we perhaps adapt these techniques
for use in biophysical systems?

Unfortunately, the behaviors of biophysical systems are critically constrained by their
3D structures, so the 2D techniques from previous chapters miss crucial information.
As a result, we will discuss a pair of new featurization techniques in this chapter. The
first featurization technique, the grid featurization, explicitly searches a 3D structure
for the presence of critical physical interactions such as hydrogen bonds and salt
bridges (more on these later), which are known to play an important role in deter‐
mining protein structure. The advantage of this technique is that we can rely upon a
wealth of known facts about protein physics. The weakness, of course, is that we are
bound by known physics and lessen the chance that our algorithms will be able to
detect new physics.

The alternative featurization technique is the atomic featurization, which simply pro‐
vides a processed representation of the 3D positions and identities of all atoms in the
system. This makes the challenge for the learning algorithm considerably harder,
since it must learn to identify critical physical interactions, but it also makes it feasi‐
ble for learning algorithms to detect new patterns of interesting behavior.

Biophysical Featurizations | 67

PDB Files and Their Pitfalls

Protein structures are often stored in PDB files. Such files are sim‐
ply text files that contain descriptions of the atoms in the structure
and their positions in coordinate space relative to one another. Fea‐
turization algorithms typically rely on libraries that read in PDB
files and store them into in-memory data structures. So far so
good, right?
Unfortunately, PDB files are often malformed. The reason lies in
the underlying physics. Often, an experiment will fail to have ade‐
quate resolution to completely specify a portion of the protein’s
structure. Such regions are left unspecified in the PDB file, so it’s
common to find that many atoms or even entire substructures of
the protein are missing from the core structure.
Libraries such as DeepChem will often attempt to do the “right”
thing and algorithmically fill in such missing regions. It’s important
to note that this cleanup is only approximate, and there’s still no
entirely satisfactory replacement to having an expert human peer at
the protein structure (in a suitable viewing program) and point out
issues. Hopefully, software tooling to handle these errors will
improve over the next few years and the need for expert guidance
will lessen.

Grid Featurization
By converting biophysical structures into vectors, we can use machine learning algo‐
rithms to make predictions about them. It stands to reason that it would be useful to
have a featurization algorithm for processing protein–ligand systems. However, it’s
quite nontrivial to devise such an algorithm. Ideally, a featurization technique would
need to have significant knowledge about the chemistry of such systems baked into it
by design, so it could pull out useful features.

These features might include, for example, counts of noncovalent bonds between the
protein and ligand, such as hydrogen bonds or other interactions. (Most protein–
ligand systems don’t have covalent bonds between the protein and ligand.)

Luckily for us, DeepChem has such a featurizer available. Its RdkitGridFeaturizer
summarizes a set of relevant chemical information into a brief vector for use in learn‐
ing algorithms. While it’s not necessary to understand the underlying science in
depth to use the featurizer, it will still be useful to have a basic understanding of the
underlying physics. So, before we dive into a description of what the grid featurizer
computes, we will first review some of the pertinent biophysics of macromolecular
complexes.

68 | Chapter 5: Biophysical Machine Learning

While reading this section, it may be useful to refer back to the discussion of basic
chemical interactions in the previous chapter. Ideas such as covalent and noncovalent
bonds will pop up quite a bit.

The grid featurizer searches for the presence of such chemical interactions within a
given structure and constructs a feature vector that contains counts of these interac‐
tions. We will say more about how this is done algorithmically later in the chapter.

Hydrogen bonds
When a hydrogen atom is covalently bonded to a more electronegative atom such as
oxygen or nitrogen, the shared electrons spend most of their time closer to the more
electronegative atom. This leaves the hydrogen with a net positive charge. If that posi‐
tively charged hydrogen then gets close to another atom with a net negative charge,
they are attracted to each other. That is a hydrogen bond (Figure 5-6).

Figure 5-6. A rendered example of a hydrogen bond. Excess negative charge on the oxy‐
gen interacts with excess positive charge on the hydrogen, creating a bonding interaction.
(Source: Wikimedia.)

Because hydrogen atoms are so small, they can get very close to other atoms, leading
to a strong electrostatic attraction. This makes hydrogen bonds one of the strongest
noncovalent interactions. They are a critical form of interaction that often stabilizes
molecular systems. For example, water’s unique properties are due in large part to the
network of hydrogen bonds that form between water molecules.

The RdkitGridFeaturizer attempts to count the hydrogen bonds present in a struc‐
ture by checking for pairs of protein/ligand atoms of the right types that are suitably
close to one another. This requires applying a cutoff to the distance, which is some‐
what arbitrary. In reality there is not a sharp division between atoms being bonded
and not bonded. This may lead to some misidentified interactions, but empirically, a
simple cutoff tends to work reasonably well.

Biophysical Featurizations | 69

https://commons.wikimedia.org/wiki/File:Hydrogen-bonding-in-water-2D.png

Salt bridges
A salt bridge is a noncovalent attraction between two amino acids, where one has a
positive charge and the other has a negative charge (see Figure 5-7). It combines both
ionic bonding and hydrogen bonding. Although these bonds are relatively weak, they
can help stabilize the structure of a protein by providing an interaction between dis‐
tant amino acids in the protein’s sequence.

Figure 5-7. An illustration of a salt bridge between glutamic acid and lysine. The salt
bridge is a combination of an ionic-style electrostatic interaction and a hydrogen bond
and serves to stabilize the structure. (Source: Wikimedia.)

The grid featurizer attempts to detect salt bridges by explicitly checking for pairs of
amino acids (such as glutamic acid and lysine) that are known to form such interac‐
tions, and that are in close physical proximity in the 3D structure of the protein.

Pi-stacking interactions
Pi-stacking interactions are a form of noncovalent interaction between aromatic rings
(Figure 5-8). These are flat, ring-shaped structures that appear in many biological
molecules, including DNA and RNA. They also appear in the side chains of some
amino acids, including phenylalanine, tyrosine, and tryptophan.

70 | Chapter 5: Biophysical Machine Learning

https://commons.wikimedia.org/wiki/File:Revisited_Glutamic_Acid_Lysine_salt_bridge.png

Figure 5-8. An aromatic ring in the benzene molecule. Such ring structures are known
for their exceptional stability. In addition, aromatic rings have all their atoms lying in a
plane. Heterogeneous rings, in contrast, don’t have their atoms occupying the same
plane.

Roughly speaking, pi-stacking interactions occur when two aromatic rings “stack” on
top of each other. Figure 5-9 shows some of the ways in which two benzene rings can
interact. Such stacking interactions, like salt bridges, can help stabilize various macro‐
molecular structures. Importantly, pi-stacking interactions can be found in ligand-
protein interactions, since aromatic rings are often found in small molecules. The
grid featurizer counts these interactions by detecting the presence of aromatic rings
and checking for the distances between their centroids and the angles between their
two planes.

Figure 5-9. Various noncovalent aromatic ring interactions. In the displaced interaction,
the centers of the two aromatic rings are slightly displaced from one another. In edge-to-
face interactions, one aromatic ring’s edge stacks on another’s face. The sandwich config‐
uration has two rings stacked directly, but is less energetically favorable than displaced
or edge-to-face interactions since regions with the same charge interact closely.

At this point, you might be wondering why this type of interaction is called pi-
stacking. The name refers to pi-bonds, a form of covalent chemical bond where the
electron orbitals of two covalently bonded atoms overlap. In an aromatic ring, all the

Biophysical Featurizations | 71

atoms in the ring participate in a joint pi-bond. This joint bond accounts for the sta‐
bility of the aromatic ring and also explains many of its unique chemical properties.

For those readers who aren’t chemists, don’t worry too much if this material doesn’t
make too much sense just yet. DeepChem abstracts away many of these implementa‐
tion details, so you won’t need to worry much about pi-stacking on a regular basis
when developing. However, it is useful to know that these interactions exist and play a
major role in the underlying chemistry.

Intricate Geometries and Snapshots

In this section, we’ve introduced a number of interactions in terms
of static geometric configurations. It’s very important to realize that
bonds are dynamic entities, and that in real physical systems, bonds
will stretch, snap, break, and reform with dizzying speed. Keep this
in mind, and note that when someone says a salt bridge exists, what
they really mean is that in some statistically average sense, a salt
bridge is likely present more often than not at a particular location.

Fingerprints
From the previous chapter, you may recall the use of circular fingerprints. These fin‐
gerprints count the number of fragments of a given type in the molecule, then use a
hash function to fit these fragment counts into a fixed-length vector. Such fragment
counts can be used for 3D molecular complexes as well. Although merely counting
the fragments is often insufficient to compute the geometry of the system, the knowl‐
edge of present fragments can nevertheless be useful for machine learning systems.
This might perhaps be due to the fact that the presence of certain fragments can be
strongly indicative of some molecular events.

Some implementation details

To search for chemical features such as hydrogen bonds, the dc.feat.RdkitGridFea
turizer needs to be able to effectively work with the geometry of the molecule.
DeepChem uses the RDKit library to load each molecule, protein, and ligand, into a
common in-memory object. These molecules are then transformed into NumPy
arrays that contain the positions of all the atoms in space. For example, a molecule
with N atoms can be represented as a NumPy array of shape (N, 3), where each row
represents the position of an atom in 3D space.

Then, performing a (crude) detection of a hydrogen bond simply requires looking at
all pairs of atoms that could conceivably form a hydrogen bond (such as oxygen and
hydrogen) that are sufficiently close to one another. The same computational strategy
is used for detecting other kinds of bonds. For handling aromatic structures, there’s a

72 | Chapter 5: Biophysical Machine Learning

bit of special code to detect the presence of aromatic rings in the structure and com‐
pute their centroids.

Atomic Featurization
At the end of the previous section, we gave a brief overview of how features such as
hydrogen bonds are computed by the RdkitGridFeaturizer. Most operations trans‐
form a molecule with N atoms into a NumPy array of shape (N, 3) and then perform
a variety of extra computations starting from these arrays.

You can easily imagine that featurization for a given molecule could simply involve
computing this (N, 3) array and passing it to a suitable machine learning algorithm.
The model could then learn for itself what features were important, rather than rely‐
ing on a human to select them and code them by hand.

In fact, this turns out to work—with a couple of extra steps. The (N, 3) position
array doesn’t distinguish atom types, so you also need to provide another array that
lists the atomic number of each atom. As a second implementation-driven note, com‐
puting pairwise distances between two position arrays of shape (N, 3) can be very
computationally expensive. It’s useful to create “neighbor lists” in a preprocessing
step, where the neighbor list maintains a list of neighboring atoms close to any given
atom.

DeepChem provides a dc.feat.ComplexNeighborListFragmentAtomicCoordinates
featurizer that handles much of this for you. We will not discuss it further in this
chapter, but it’s good to know that it exists as another option.

The PDBBind Case Study
With this introduction in place, let’s start tinkering with some code samples for han‐
dling biophysical datasets. We will start by introducing the PDBBind dataset and the
problem of binding free energy prediction. We will then provide code examples of
how to featurize the PDBBind dataset and demonstrate how to build machine learn‐
ing models for it. We will end the case study with a discussion of how to evaluate the
results.

PDBBind Dataset
The PDBBind dataset contains a large number of biomolecular crystal structures and
their binding affinities. There’s a bit of jargon there, so let’s stop and unpack it. A bio‐
molecule is any molecule of biological interest. That includes not just proteins, but
also nucleic acids (such as DNA and RNA), lipids, and smaller drug-like molecules.
Much of the richness of biomolecular systems results from the interactions of various
biomolecules with one another (as we’ve discussed at length already). A binding affin‐

The PDBBind Case Study | 73

ity is the experimentally measured affinity of two molecules to form a complex, with
the two molecules interacting. If it is energetically favorable to form such a complex,
the molecules will spend more time in that configuration as opposed to another one.

The PDBBind dataset has gathered structures of a number of biomolecular com‐
plexes. The large majority of these are protein–ligand complexes, but the dataset also
contains protein–protein, protein–nucleic acid, and nucleic acid–ligand complexes.
For our purposes, we will focus on the protein–ligand subset. The full dataset con‐
tains close to 15,000 such complexes, with the “refined” and “core” sets containing
smaller but cleaner subsets of complexes. Each complex is annotated with an experi‐
mental measurement of the binding affinity for the complex. The learning challenge
for the PDBBind dataset is to predict the binding affinity for a complex given the pro‐
tein–ligand structure.

The data for PDBBind is gathered from the Protein Data Bank. Note that the data in
the PDB (and consequently PDBBind) is highly heterogeneous! Different research
groups have different experimental setups, and there can be high experimental var‐
iance between different measurements by different groups. For this reason, we will
primarily use the filtered refined subset of the PDBBind dataset for doing our experi‐
mental work.

Dynamics Matter!

In this case study, we treat the protein and ligand as a frozen snap‐
shot. Note that this is very unphysical! The protein and ligand are
actually in rapid movement, and the ligand will move in and out of
the protein’s binding pocket. In addition, the protein may not even
have one fixed binding pocket. For some proteins, there are a num‐
ber of different sites where potential ligands interact.
All these combinations of factors mean that our models will have
relatively limited accuracy. If we had more data, it might be possi‐
ble that strong learning models could learn to account for these
factors, but with more limited datasets, it is challenging to do so.
You should probably note this information. The design of better
biophysical deep learning models to accurately account for the
thermodynamic behavior of these systems remains a major open
problem.

74 | Chapter 5: Biophysical Machine Learning

What If You Don’t Have a Structure?

Drug discovery veterans might pause for a minute here. The fact is
that it’s typically much harder experimentally to determine the
structure of a complex than it is to measure a binding affinity. This
makes sense intuitively. A binding affinity is a single number for a
given biomolecular complex, while a structure is a rich 3D snap‐
shot. Predicting the binding affinity from the structure might feel a
little bit like putting the cart before the horse!
There are a couple of answers to this (fair) accusation. The first is
that the problem of determining the binding affinity of a biomolec‐
ular system is a physically interesting problem in its own right.
Checking that we can accurately predict such binding affinities is a
worthy test problem to benchmark our machine learning methods
and can serve as a stepping stone to designing deep architectures
capable of understanding sophisticated biophysical systems.
The second answer is that we can use existing computational tool‐
ing, such as “docking” software, to predict approximate structures
for a protein–ligand complex given that we have a structure for the
protein in isolation. While predicting a protein structure directly is
a formidable challenge, it’s somewhat easier to predict the structure
of a protein–ligand complex when you already have the protein
structure. So, you might well be able to make useful predictions
with the system we will create in this case study by pairing it with a
docking engine. Indeed, DeepChem has support for this use case,
but we will not delve into this more advanced feature in this chap‐
ter.

In general, when doing machine learning, it can be particularly useful to take a look
at individual data points or files within a dataset. In the code repository associated
with this book, we’ve included the PDB file for a protein–ligand complex called
2D3U. It contains information about the amino acids (also called residues) of the pro‐
tein.In addition, the PDB file contains the coordinates of each atom in 3D space. The
units for these coordinates are angstroms (1 angstrom is 10−10 meters). The origin of
this coordinate system is arbitrarily set to help in visualizing the protein, and is often
set at the centroid of the protein. We recommend taking a minute to open this file in
a text editor and take a look.

The PDBBind Case Study | 75

https://github.com/deepchem/DeepLearningLifeSciences
https://github.com/deepchem/DeepLearningLifeSciences

Why Is an Amino Acid Called a Residue?

As you spend more time working with biophysical data, you will
commonly come across the terminology of an amino acid being
called a residue. This refers to the chemistry of how proteins are
formed. When two amino acids are joined together in a growing
chain, an oxygen and two hydrogens are removed. A “residue” is
what remains of an amino acid after this reaction takes place.

It can be very hard to understand the contents of a PDB file, so let’s visualize a pro‐
tein. We will use the NGLview visualization package, which integrates well with
Jupyter notebooks. In the notebook associated with this chapter in the code reposi‐
tory, you will be able to manipulate and interact with the visualized protein. For now,
Figure 5-10 shows a visualization of a protein–ligand complex (2D3U) generated
within the Jupyter notebook.

Figure 5-10. A visualization of the 2D3U protein–ligand complex from the PDBBind
dataset. Note that the protein is represented in cartoon format for ease of visualization,
and that the ligand (near the top-right corner) is represented in ball-and-stick format for
full detail.

Notice how the ligand rests in a sort of “pocket” in the protein. You can see this more
clearly by rotating the visualization to look at it from different sides.

76 | Chapter 5: Biophysical Machine Learning

https://github.com/arose/nglview

Protein Visualization Tools

Given the importance of visualizing proteins to work with them,
there are a number of protein visualization tools available. While
NGLview has amazing Jupyter integration, it’s more common to see
other tools, such as VMD, PyMOL, or Chimera, in use by profes‐
sional drug discoverers. Note, however, that these tools are often
not fully open source, and may not feature a developer-friendly
API. Nevertheless, if you plan to spend significant time working
with protein structures, using one of these more established tools is
probably still worth the trade-off.

Featurizing the PDBBind Dataset
Let’s start by building a RdkitGridFeaturizerobject that we can inspect:

import deepchem as dc
grid_featurizer = dc.feat.RdkitGridFeaturizer(
 voxel_width=2.0,
 feature_types=['hbond', 'salt_bridge', 'pi_stack',
 'cation_pi', 'ecfp', 'splif'],
 sanitize=True, flatten=True)

There are a number of options here, so let’s pause and consider what they mean. The
sanitize=True flag asks the featurizer to try to clean up any structures it is given.
Recall from our earlier discussion that structures are often malformed. The sanitiza‐
tion step will attempt to fix any obvious errors that it detects. Setting flatten=True
asks the featurizer to output a one-dimensional feature vector for each input struc‐
ture.

The feature_types flag sets the types of biophysical and chemical features that the
RdkitGridFeaturizer will attempt to detect in input structures. Note the presence of
many of the chemical bonds we discussed earlier in the chapter: hydrogen bonds, salt
bridges, etc. Finally, the option voxel_width=2.0 sets the size of the voxels making
up the grid to 2 angstroms. The RdkitGridFeaturizer converts a protein to a voxel‐
ized representation for use in extracting useful features. For each spatial voxel, it
counts biophysical features and also computes a local fingerprint vector. The Rdkit
GridFeaturizer computes two different types of fingerprints, the ECFP and SPLIF
fingerprints.

Voxelization

What is voxelization? Broadly put, a voxel is the 3D analogue of a
pixel (see Figure 5-11). Just as pixelized representations of images
can be extraordinarily useful for handling imaging data, voxelized
representations can be critical when working with 3D data.

The PDBBind Case Study | 77

https://www.ks.uiuc.edu/Research/vmd/
https://pymol.org
https://www.cgl.ucsf.edu/chimera/

Figure 5-11. A voxelized representation of a sphere. Note how each voxel represents a
spatial cube of input.

We are now ready to load the PDBBind dataset. We don’t actually need to use the fea‐
turizer we just defined: MoleculeNet will take care of it for us. If we include the flag
featurizer="grid" when loading the dataset, it will perform grid featurization auto‐
matically:

tasks, datasets, transformers = dc.molnet.load_pdbbind(
 featurizer="grid", split="random", subset="core")
train_dataset, valid_dataset, test_dataset = datasets

With this snippet, we’ve loaded and featurized the core subset of PDBBind. On a fast
computer, this should run within 10 minutes. Featurizing the refined subset will take
a couple of hours on a modern server.

Now that we have the data in hand, let’s start building some machine learning mod‐
els. We’ll first train a classical model called a random forest:

from sklearn.ensemble import RandomForestRegressor
sklearn_model = RandomForestRegressor(n_estimators=100)
model = dc.models.SklearnModel(sklearn_model)
model.fit(train_dataset)

As an alternative, we will also try building a neural network for predicting protein–
ligand binding. We can use the dc.models.MultitaskRegressor class to build an
MLP with two hidden layers. We set the widths of the hidden layers to 2,000 and
1,000, respectively, and use 50% dropout to reduce overfitting.:

n_features = train_dataset.X.shape[1]
model = dc.models.MultitaskRegressor(
 n_tasks=len(pdbbind_tasks),

78 | Chapter 5: Biophysical Machine Learning

 n_features=n_features,
 layer_sizes=[2000, 1000],
 dropouts=0.5,
 learning_rate=0.0003)
model.fit(train_dataset, nb_epoch=250)

Baseline Models

Deep learning models are tricky to optimize correctly at times. It’s
easy for even experienced practitioners to make errors when tuning
a deep model. For this reason, it’s critical to construct a baseline
model that is more robust, even if it perhaps has lower perfor‐
mance.
Random forests are very useful choices for baselines. They often
offer strong performance on learning tasks with relatively small
amounts of tuning. A random forest classifier constructs many
“decision tree” classifiers, each using only a random subset of the
available features, then combines the individual decisions of these
classifiers via a majority vote.
Scikit-learn is an invaluable package for constructing simple
machine learning baselines. We will use scikit-learn to construct a
baseline model in this chapter, using the RdkitGridFeaturizer to
featurize complexes as inputs to random forests.

Now that we have a trained model, we can proceed to checking its accuracy. In order
to evaluate the accuracy of the model, we have to first define a suitable metric. Let’s
use the Pearson R2 score. This is a number between –1 and 1, where 0 indicates no
correlation between the true and predicted labels, and 1 indicates perfect correlation:

metric = dc.metrics.Metric(dc.metrics.pearson_r2_score)

Let’s now evaluate the accuracy of the models on the training and test datasets
according to this metric. The code to do so is again shared between both models:

print("Evaluating model")
train_scores = model.evaluate(train_dataset, [metric], transformers)
test_scores = model.evaluate(test_dataset, [metric], transformers)

print("Train scores")
print(train_scores)

print("Test scores")
print(test_scores)

The PDBBind Case Study | 79

Many Architectures Can Have Similar Effects

In this section, we provide code examples of how to use an MLP
with grid featurization to model protein–ligand structures in Deep‐
Chem. It’s important to note that there are a number of alternative
deep architectures that have similar effects. There’s been a line of
work on using 3D convolutional networks to predict protein–
ligand binding interactions using voxel-based featurizations. Other
work has used variants of the graph convolutions we saw in the
previous chapter to handle macromolecular complexes.
What are the differences between these architectures? So far, it
looks like most of them have similar predictive power. We use grid
featurization because there’s a tuned implementation in Deep‐
Chem, but other models may serve your needs as well. Future ver‐
sions of DeepChem will likely include additional architectures for
this purpose.

For the random forest, this reports a training set score of 0.979 but a test set score of
only 0.133. It does an excellent job of reproducing the training data but a very poor
job of predicting the test data. Apparently it is overfitting quite badly.

In comparison, the neural network has a training set score of 0.990 and a test set
score of 0.359. It does slightly better on the training set and much better on the test
set. There clearly is still overfitting going on, but the amount is reduced and the over‐
all ability of the model to predict new data is much higher.

Knowing the correlation coefficient is a powerful first step toward understanding the
model we’ve built, but it’s always useful to directly visualize how our predictions cor‐
relate with actual experimental data. Figure 5-12 shows the true versus predicted
labels for each of the models when run on the test set. We immediately see how the
neural network’s predictions are much more closely correlated with the true data than
are the random forest’s.

80 | Chapter 5: Biophysical Machine Learning

Figure 5-12. True versus predicted labels for the two models when run on the test set.

Conclusion
In this chapter you’ve learned about applying deep learning to biophysical systems,
and in particular to the problem of predicting the binding affinity of protein–ligand
systems. You might be curious how general the skills you’ve learned are. Could you
apply these same models and techniques to understand other biophysical datasets?
Let’s do a quick survey and tour.

Protein–protein and protein–DNA systems follow the same basic physics as protein–
ligand systems at a high level. The same hydrogen bonds, salt bridges, pi-stacking
interactions, and so on play a critical role. Could we just reuse the code from this
chapter to analyze such systems? The answer turns out to be a little complicated.
Many of the physical interactions that drive protein–ligand interactions are driven by
charged dynamics. Protein–protein dynamics may, on the other hand, be driven
more by bulk hydrophobic interactions. We won’t dig deeply into the meaning of
these interactions, but they have a different character qualitatively than protein–
ligand interactions to some degree. This could mean that RdkitGridFeaturizer
wouldn’t do a good job of characterizing these interactions. On the other hand, it’s
possible that the atomic convolutional models might do a better job of handling these
systems, since much less about the physics of interactions is hardcoded into these
deep models.

That said, there remains a significant problem of scale. The atomic convolutional
models are quite slow to train and require a great deal of memory. Scaling these mod‐
els to handle larger protein–protein systems would require additional work on the
engineering end. The DeepChem development team is hard at work on these and
other challenges, but more time may be required before these efforts reach fruition.

Conclusion | 81

Antibody–antigen interactions are another form of critical biophysical interaction.
Antibodies are Y-shaped proteins (see Figure 5-13) that have a variable “antigen-
binding site” used to bind antigens. Here, antigens are molecules associated with a
particular pathogen. Cells grown in culture can be harnessed to create antibodies that
target specific antigens. If all the cells in a culture are clones of a given cell, then the
antibodies produced will be identical. Such “monoclonal antibodies” have recently
found wide therapeutic use.

Figure 5-13. Diagram of antibody–antigen interaction. (Source: Wikimedia.)

The design of antibodies has primarily been an experimental science until now. Part
of this is due to the challenges involved in getting a 3D antibody structure. However,
modeling the complex antigen–antibody binding site has also proven a challenge.
Some of the techniques we’ve covered in this chapter may find fruitful use in anti‐
body–antigen binding modeling over the next few years.

We’ve also alluded to the importance of dynamics in understanding protein physics.
Could we not do deep learning directly on protein simulations to understand which
ligands could bind to the protein? In principle yes, but formidable challenges remain.
Some companies are actively working on this challenge, but good open source tooling
is not yet available.

82 | Chapter 5: Biophysical Machine Learning

https://en.wikipedia.org/wiki/Antibody#/media/File:Antibody.svg

In Chapter 11, we will return to some biophysical techniques and show how these
models can be very useful for drug discovery work.

Conclusion | 83

CHAPTER 6

Deep Learning for Genomics

At the heart of every living organism is its genome: the molecules of DNA containing
all the instructions to make the organism’s working parts. If a cell is a computer, then
its genome sequence is the software it executes. And if DNA can be seen as software,
information meant to be processed by a computer, surely we can use our own com‐
puters to analyze that information and understand how it functions?

But of course, DNA is not just an abstract storage medium. It is a physical molecule
that behaves in complicated ways. It also interacts with thousands of other molecules,
all of which play important roles in maintaining, copying, directing, and carrying out
the instructions contained in the DNA. The genome is a huge and complex machine
made up of thousands of parts. We still have only a poor understanding of how most
of those parts work, to say nothing of how they all come together as a working whole.

This brings us to the twin fields of genetics and genomics. Genetics treats DNA as
abstract information. It looks at patterns of inheritance, or seeks correlations across
populations, to discover the connections between DNA sequences and physical traits.
Genomics, on the other hand, views the genome as a physical machine. It tries to
understand the pieces that make up that machine and the ways they work together.
The two approaches are complementary, and deep learning can be a powerful tool for
both of them.

DNA, RNA, and Proteins
Even if you are not a biologist, at some point in your education you probably studied
the basics of how genomes operate. We will first review the simplified picture of
genomics that is usually taught in introductory classes. Then we will describe some of
the ways in which the real world is more complicated.

85

DNA is a polymer: a long chain of repeating units strung together. In the case of
DNA, there are four units (called bases) that can appear: adenine, cytosine, guanine,
and thymine, which are abbreviated as A, C, G, and T (see Figure 6-1). Nearly all the
information about how to make a living organism is ultimately encoded in the spe‐
cific pattern of these four repeating units that make up its genome.

Figure 6-1. Structure of a DNA molecule. It consists of two chains, each made of many
A, C, G, and T bases. The two chains are complementary: every C in one chain is paired
with a G in the other, and every A in one chain is paired with a T in the other. (Source:
Wikimedia.)

If DNA is the software, proteins are the most important hardware. Proteins are tiny
machines that do almost all the work in a cell. Proteins are also polymers, made up of
repeating units called amino acids. There are 20 main amino acids, and their physical
properties vary widely. Some are large while others are small. Some have an electric
charge while others do not. Some tend to attract water while others tend to repel it.
When just the right set of amino acids is strung together in just the right order, it will
spontaneously fold up into a 3D shape, all the pieces positioned just right to let it
function as a machine.

One of the main functions of DNA is to record the sequences of amino acids for an
organism’s proteins. It does this in a simple, straightforward way. Particular stretches
of DNA directly correspond to particular proteins. Each sequence of three DNA bases
(called a codon) corresponds to one amino acid. For example, the pattern AAA indi‐
cates the amino acid lysine, while the pattern GCC indicates the amino acid alanine.

Going from DNA to protein involves another molecule, RNA, that serves as an inter‐
mediate representation to carry information from one part of the cell to another.
RNA is yet another polymer and is chemically very similar to DNA. It too has four
bases that can be chained together in arbitrary orders. To create a protein, the infor‐
mation must be copied twice. First the DNA sequence is transcribed into an equiva‐
lent RNA sequence, and then the RNA molecule is translated into a protein molecule.

86 | Chapter 6: Deep Learning for Genomics

https://en.wikipedia.org/wiki/Molecular_Structure_of_Nucleic_Acids:_A_Structure_for_Deoxyribose_Nucleic_Acid#/media/File:DNA-structure-and-bases.png

The RNA molecule that carries the information is called a messenger RNA, or mRNA
for short.

This tells us how proteins get made, but not when. A human cell has many thousands
of different proteins it can make. Surely it doesn’t just churn out copies of all of them,
all the time? Clearly there must be some sort of regulatory mechanism to control
which proteins get made when. In the conventional picture, this is done by special
proteins called transcription factors (TFs). Each TF recognizes and binds to a particu‐
lar DNA sequence. Depending on the particular TF and the location where it binds, it
can either increase or decrease the rate at which nearby genes are transcribed.

This gives a simple, easy-to-understand picture of how a genome works. The job of
DNA is to encode proteins. Stretches of DNA (called genes) code for proteins using a
simple, well-defined code. DNA is converted to RNA, which serves only as an infor‐
mation carrier. The RNA is then converted into proteins, which do all the real work.
The whole process is very elegant, the sort of thing a talented engineer might have
designed. And for many years, this picture was believed to be mostly correct. So, take
a moment to enjoy it before we spoil the view by revealing that reality is actually far
messier and far more complicated.

And Now for the Real World
Now it’s time to talk about how genomes really work. The picture described in the
previous section is simple and elegant, but unfortunately it has little connection to
reality. This section will go through a lot of information very quickly, but don’t worry
about remembering or understanding all of it. The important thing is just to get a
sense of the incredible complexity of living organisms. We will return to some of
these subjects later in the chapter and discuss them in more detail.

Let’s begin by considering DNA molecules (called chromosomes). In bacteria, which
have relatively small genomes, DNA exists as simple free-floating molecules. But
eukaryotes (a group that includes amoebas, humans, and everything in between) have
much larger genomes. To fit inside the cell, each chromosome must be packed into a
very small space. This is accomplished by winding it around proteins called histones.
But if all the DNA is tightly packed away, how can it be transcribed? The answer, of
course, is that it can’t. Before a gene can be transcribed, the stretch of DNA contain‐
ing it first must be unwound. How does the cell know which DNA to unwind? The
answer is still poorly understood. It is believed to involve various types of chemical
modification to the histone molecules, and proteins that recognize particular modifi‐
cations. Clearly there is a regulatory mechanism involved, but many of the details are
still unknown. We will return to this subject shortly.

DNA itself can be chemically modified through a process called methylation. The
more highly a stretch of DNA is methylated, the less likely it is to be transcribed, so

And Now for the Real World | 87

this is another regulatory mechanism the cell can use to control the production of
proteins. But how does it control which regions of DNA are methylated? This too is
still poorly understood.

In the previous section we said that a particular stretch of DNA corresponds to a par‐
ticular protein. That is correct for bacteria, but in eukaryotes the situation is more
complicated. After the DNA is transcribed into a messenger RNA, that RNA often is
edited to remove sections and connect (or splice) the remaining parts (called exons)
back together again. The RNA sequence that finally gets translated into a protein may
therefore be different from the original DNA sequence. In addition, many genes have
multiple splice variants—different ways of removing sections to form the final
sequence. This means a single stretch of DNA can actually code for several different
proteins!

Is all of this starting to sound very complicated? Well, keep reading, because we’ve
barely started! Evolution selects for mechanisms that work, without any concern for
whether they are simple or easy to understand. It leads to very complicated systems,
and understanding them requires us to confront that complexity.

In the conventional picture RNA is viewed as just an information carrier, but even
from the early days of genomics, biologists knew that was not entirely correct. The
job of translating mRNA to proteins is performed by ribosomes, complicated molecu‐
lar machines made partly of proteins and partly of RNA. Another key role in transla‐
tion is performed by molecules called transfer RNAs (or tRNAs for short). These are
the molecules that define the “genetic code,” recognizing patterns of three bases in
mRNA and adding the correct amino acid to the growing protein. So, for over half a
century we’ve known there were at least three kinds of RNA: mRNA, ribosomal RNA,
and tRNA.

But RNA still had lots of tricks up its sleeve. It is a surprisingly versatile molecule.
Over the last few decades, many other types of RNA have been discovered. Here are
some examples:

• Micro RNAs (miRNAs) are short pieces of RNA that bind to a messenger RNA
and prevent it from being translated into proteins. This is a very important regu‐
latory mechanism in some types of animals, especially mammals.

• Short interfering RNA (siRNA) is another type of RNA that binds to mRNA and
prevents it from being translated. It’s similar to miRNA, but siRNAs are double
stranded (unlike miRNAs, which are single stranded), and some of the details of
how they function are different. We will discuss siRNA in more detail later in the
chapter.

• Ribozymes are RNA molecules that can act as enzymes to catalyze chemical reac‐
tions. Chemistry is the foundation of everything that happens in a living cell, so

88 | Chapter 6: Deep Learning for Genomics

catalysts are vital to life. Usually this job is done by proteins, but we now know it
sometimes is done by RNA.

• Riboswitches are RNA molecules that consist of two parts. One part acts as a mes‐
senger RNA, while the other part is capable of binding to a small molecule. When
it binds, that can either enable or prevent translation of the mRNA. This is yet
another regulatory mechanism by which protein production can be adjusted
based on the concentration of particular small molecules in the cell.

Of course, all these different types of RNA must be manufactured, and the DNA must
contain instructions on how to make them. So, DNA is more than just a string of
encoded protein sequences. It also contains RNA sequences, plus binding sites for
transcription factors and other regulatory molecules, plus instructions for how mes‐
senger RNAs should be spliced, plus various chemical modifications that influence
how it is wound around histones and which genes get transcribed.

Now consider what happens after the ribosome finishes translating the mRNA into a
protein. Some proteins can spontaneously fold into the correct 3D shape, but many
others require help from other proteins called chaperones. It is also very common for
proteins to need additional chemical modifications after they are translated. Then the
finished protein must be transported to the correct location in the cell to do its job,
and finally degraded when it is no longer needed. Each of these processes is con‐
trolled by additional regulatory mechanisms, and involves interactions with lots of
other molecules.

If this all sounds overwhelming, that’s because it is! A living organism is far more
complicated than any machine ever created by humans. The thought of trying to
understand it should intimidate you!

But this is also why machine learning is such a powerful tool. We have huge amounts
of data, generated by a process that is both mind-bogglingly complex and poorly
understood. We want to discover subtle patterns buried in the data. This is exactly the
sort of problem that deep learning excels at!

In fact, deep learning is uniquely well suited to the problem. Classical statistical tech‐
niques struggle to represent the complexity of the genome. They often are based
around simplifying assumptions. For example, they look for linear relationships
between variables, or they try to model a variable as depending on only a small num‐
ber of other variables. But genomics involves complex nonlinear relationships
between hundreds of variables: exactly the sort of relationship that can be effectively
described by a deep neural network.

And Now for the Real World | 89

Transcription Factor Binding
As an example of applying deep learning to genomics, let’s consider the problem of
predicting transcription factor binding. Recall that TFs are proteins that bind to
DNA. When they bind, they influence the probability of nearby genes being transcri‐
bed into RNA. But how does a TF know where to bind? Like so much of genomics,
this question has a simple answer followed by lots of complications.

To a first approximation, every TF has a specific DNA sequence called its binding site
motif that it binds to. Binding site motifs tend to be short, usually 10 bases or less.
Wherever a TF’s motif appears in the genome, the TF will bind to it.

In practice, though, motifs are not completely specific. A TF may be able to bind to
many similar but not identical sequences. Some bases within the motif may be more
important than others. This is often modeled as a position weight matrix that specifies
how much preference the TF has for each possible base at each position within the
motif. Of course, that assumes every position within the motif is independent, which
is not always true. Sometimes even the length of a motif can vary. And although bind‐
ing is primarily determined by the bases within the motif, the DNA to either side of it
can also have some influence.

And that’s just considering the sequence! Other aspects of the DNA can also be
important. Many TFs are influenced by the physical shape of the DNA, such as how
tightly the double helix is twisted. If the DNA is methylated, that can influence TF
binding. And remember that most DNA in eukaryotes is tightly packed away, wound
around histones. TFs can only bind to the portions that have been unwound.

Other molecules also play important roles. TFs often interact with other molecules,
and those interactions can affect DNA binding. For example, a TF may bind to a sec‐
ond molecule to form a complex, and that complex then binds to a different DNA
motif than the TF would on its own.

Biologists have spent decades untangling these details and designing models for TF
binding. Instead of doing that, let’s see if we can use deep learning to learn a model
directly from data.

A Convolutional Model for TF Binding
For this example, we will use experimental data on a particular transcription factor
called JUND. An experiment was done to identify every place in the human genome
where it binds. To keep things manageable, we only include the data from chromo‐
some 22, one of the smallest human chromosomes. It is still over 50 million bases
long, so that gives us a reasonable amount of data to work with. The full chromosome
has been split up into short segments, each 101 bases long, and each segment has
been labeled to indicate whether it does or does not include a site where JUND binds.

90 | Chapter 6: Deep Learning for Genomics

We will try to train a model that predicts those labels based on the sequence of each
segment.

The sequences are represented with one-hot encoding. For each base we have four
numbers, of which one is set to 1 and the others are set to 0. Which of the four num‐
bers is set to 1 indicates whether the base is an A, C, G, or T.

To process the data we will use a convolutional neural network, just like we did for
recognizing handwritten digits in Chapter 3. In fact, you will see the two models are
remarkably similar to each other. This time we will use 1D convolutions, since we are
dealing with 1D data (DNA sequences) instead of 2D data (images), but the basic
components of the model will be the same: inputs, a series of convolutional layers,
one or more dense layers to compute the output, and a cross entropy loss function.

Let’s start by creating a TensorGraph and defining the inputs:

model = dc.models.TensorGraph(batch_size=1000)
features = layers.Feature(shape=(None, 101, 4))
labels = layers.Label(shape=(None, 1))
weights = layers.Weights(shape=(None, 1))

Notice the sizes of the inputs. For each sample, we have a feature vector of size 101
(the number of bases) by 4 (the one-hot encoding of each base). We also have a single
number for the label (either 0 or 1, to indicate whether it contains a binding site) and
a single number for the weight. Using weights in the loss function is critical for this
example, because the data is very unbalanced. Less than 1% of all samples include a
binding site. That means the model could trivially get better than 99% accuracy by
just outputting 0 for every sample. We prevent this by giving the positive samples
higher weights than the negative ones.

Next we create a stack of three convolutional layers, all with identical parameters:

prev = features
for i in range(3):
 prev = layers.Conv1D(filters=15, kernel_size=10,
 activation=tf.nn.relu, padding='same',
 in_layers=prev)
 prev = layers.Dropout(dropout_prob=0.5, in_layers=prev)

We specify 10 for the width of the convolutional kernels, and that each layer should
include 15 filters (that is, outputs). The first layer takes the raw features (four num‐
bers per base) as input. It looks at spans of 10 consecutive bases, so 40 input values in
total. For each span, it multiplies those 40 values by a convolutional kernel to produce
15 output values. The second layer again looks at spans of 10 bases, but this time the
inputs are the 15 values computed by the first layer. It computes a new set of 15 values
for each base, and so on.

Transcription Factor Binding | 91

To prevent overfitting, we add a dropout layer after each convolutional layer. The
dropout probability is set to 0.5, meaning that 50% of all output values are randomly
set to 0.

Next we use a dense layer to compute the output:

logits = layers.Dense(out_channels=1, in_layers=layers.Flatten(prev))
output = layers.Sigmoid(logits)
model.add_output(output)

We want the output to be between 0 and 1 so we can interpret it as the probability a
particular sample contains a binding site. The dense layer can produce arbitrary val‐
ues, not limited to any particular range. We therefore pass it through a logistic sig‐
moid function to compress it to the desired range. The input to this function is often
referred to as logits. The name refers to the mathematical logit function, which is the
inverse function of the logistic sigmoid.

Finally, we compute the cross entropy for each sample and multiply by the weights to
get the loss:

loss = layers.SigmoidCrossEntropy(in_layers=[labels, logits])
weighted_loss = layers.WeightedError(in_layers=[loss, weights])
model.set_loss(weighted_loss)

Notice that for reasons of numerical stability, the cross entropy layer takes logits as
input instead of the output of the sigmoid function.

Now we are ready to train and evaluate the model. We use ROC AUC as our evalua‐
tion metric. After every 10 epochs of training, we evaluate the model on both the
training and validation sets:

train = dc.data.DiskDataset('train_dataset')
valid = dc.data.DiskDataset('valid_dataset')
metric = dc.metrics.Metric(dc.metrics.roc_auc_score)
for i in range(20):
 model.fit(train, nb_epoch=10)
 print(model.evaluate(train, [metric]))
 print(model.evaluate(valid, [metric]))

The result is shown in Figure 6-2. The validation set performance peaks at about 0.75
after 50 epochs, then decreases slightly. The training set performance continues to
increase, eventually leveling off at around 0.87. This tells us that training beyond 50
epochs just leads to overfitting, and we should halt training at that point:

92 | Chapter 6: Deep Learning for Genomics

Figure 6-2. Evolution of ROC AUC scores during training for the training set (dashed)
and validation set (solid).

A ROC AUC score of 0.75 is not bad, but also not wonderful. Possibly we could
increase it by improving the model. There are lots of hyperparameters we could try
changing: the number of convolutional layers, the kernel width for each layer, the
number of filters in each layer, the dropout rate, etc. We could try lots of combina‐
tions for them, and we might find one with better performance.

But we also know there are fundamental limits to how well this model can ever work.
The only input it looks at is the DNA sequence, and TF binding also depends on lots
of other factors: accessibility, methylation, shape, the presence of other molecules, etc.
Any model that ignores those factors will be limited in how accurate its predictions
can ever be. So now let’s try adding a second input and see if it helps.

Chromatin Accessibility
The name chromatin refers to everything that makes up a chromosome: DNA, histo‐
nes, and various other proteins and RNA molecules. Chromatin accessibility refers to
how accessible each part of the chromosome is to outside molecules. When the DNA
is tightly wound around histones, is becomes inaccessible to transcription factors and
other molecules. They cannot reach it, and the DNA is effectively inactive. When it
unwinds from the histones, it becomes accessible again and resumes its role as a cen‐
tral part of the cell’s machinery.

Chromatin accessibility is neither uniform nor static. It varies between types of cells
and stages of a cell’s life cycle. It can be affected by environmental conditions. It is one
of the tools a cell uses to regulate the activity of its genome. Any gene can be turned
off by packing away the area of the chromosome where it is located.

Chromatin Accessibility | 93

Accessibility also is constantly changing as DNA winds and unwinds in response to
events in the cell. Instead of thinking of accessibility as a binary choice (accessible or
inaccessible), it is better to think of it as a continuous variable (what fraction of the
time each region is accessible).

The data we analyzed in the last section came from experiments on a particular kind
of cell called HepG2. The experiments identified locations in the genome where the
transcription factor JUND was bound. The results were influenced by chromatin
accessibility. If a particular region is almost always inaccessible in HepG2 cells, the
experiment was very unlikely to find JUND bound there, even if the DNA sequence
would otherwise be a perfect binding site. So, let’s try incorporating accessibility into
our model.

First let’s load some data on accessibility. We have it in a text file where each line cor‐
responds to one sample from our dataset (a 101-base stretch of chromosome 22). A
line contains the sample ID followed by a number that measures how accessible that
region tends to be in HepG2 cells. We’ll load it into a Python dictionary:

span_accessibility = {}
for line in open('accessibility.txt'):
 fields = line.split()
 span_accessibility[fields[0]] = float(fields[1])

Now to build the model. We will use almost exactly the same model as in the previous
section with just two minor changes. First, we need a second feature input for the
accessibility values. It has one number for each sample:

accessibility = layers.Feature(shape=(None, 1))

Now we need to incorporate the accessibility value into the calculation. There are
many ways we might do this. For the purposes of this example, we will use a particu‐
larly simple method. In the previous section, we flattened the output of the last con‐
volution layer, then used it as the input to a dense layer that calculated the output.

logits = layers.Dense(out_channels=1, in_layers=layers.Flatten(prev))

This time we will do the same thing, but also append the accessibility to the output of
the convolution:

prev = layers.Concat([layers.Flatten(prev), accessibility])
logits = layers.Dense(out_channels=1, in_layers=prev)

That’s all there is to the model! Now it’s time to train it.

At this point we run into a difficulty: our model has two different Feature layers! Up
until now, our models have had exactly one Feature layer, one Label layer, and possi‐
bly one Weights layer. We trained them by calling fit(dataset), which automatically
connected the correct data to each layer: the dataset’s X field for the features, y for the

94 | Chapter 6: Deep Learning for Genomics

labels, and w for the weights. But that clearly can’t work when the model has more
than one set of features.

This situation is handled by using a more advanced feature of DeepChem. Instead of
passing a dataset to the model, we can write a Python generator function that iterates
over batches. Each batch is represented by a dictionary whose keys are input layers,
and whose values are the NumPy arrays to use for them:

def generate_batches(dataset, epochs):
 for epoch in range(epochs):
 for X, y, w, ids in dataset.iterbatches(batch_size=1000,
 pad_batches=True):
 yield {
 features: X,
 accessibility: np.array([span_accessibility[id] for id in ids]),
 labels: y,
 weights: w
 }

Notice how the dataset takes care of iterating through batches for us. It provides the
data for each batch, from which we can construct whatever inputs the model requires.

Training and evaluation now proceed exactly as before. We use alternate forms of the
methods that take a generator instead of a dataset:

for i in range(20):
 model.fit_generator(generate_batches(train, 10))
 print(model.evaluate_generator(generate_batches(train, 1), [metric],
 labels=[labels], weights=[weights]))
 print(model.evaluate_generator(generate_batches(valid, 1), [metric],
 labels=[labels], weights=[weights]))

The result is shown in Figure 6-3. Both the training and validation set scores are
improved compared to the model that ignored chromatin accessibility. ROC AUC
score now reaches 0.91 for the training set and 0.80 for the validation set.

Chromatin Accessibility | 95

Figure 6-3. Evolution of ROC AUC scores during training for the training set (dashed)
and validation set (solid) when including chromatin accessibility as an input.

RNA Interference
For our final example, let’s turn to RNA. Much like DNA, this is a polymer composed
of four repeating units called bases. In fact, three of the four bases are almost identical
to their DNA versions, differing only in having one extra oxygen atom. The fourth
base is a little more different. In place of thymine (T), RNA has a base called uracil
(U). When a DNA sequence is transcribed into RNA, every T is replaced by a U.

The bases G and C are complementary to each other, in the sense that they have a
strong tendency to bond to each other. Likewise, the bases A and T (or U) are com‐
plementary. If you have two strands of DNA or RNA, and every base in one is com‐
plementary to the corresponding base in the other, the two strands will tend to stick
together. This fact plays a key role in lots of biological processes, including both tran‐
scription and translation, as well as DNA replication when a cell is dividing.

It also is central to something called RNA interference. This phenomenon was only
discovered in the 1990s, and the discovery led to a Nobel Prize in 2006. A short piece
of RNA whose sequence is complementary to part of a messenger RNA can bind to
that mRNA. When this happens, it “silences” the mRNA and prevents it from being
translated into a protein. The molecule that does the silencing is called a short inter‐
fering RNA (siRNA).

Except there is much more to the process than that. RNA interference is a complex
biological mechanism, not just a side effect of two isolated RNA strands happening to
stick together. It begins with the siRNA binding to a collection of proteins called the
RNA-induced silencing complex (RISC). The RISC uses the siRNA as a template to
search out matching mRNAs in the cell and degrade them. This serves both as a
mechanism for regulating gene expression and as a defense against viruses.

96 | Chapter 6: Deep Learning for Genomics

1 Huesken, D., J. Lange, C. Mickanin, J. Weiler, F. Asselbergs, J. Warner, B. Meloon, S. Engel, A. Rosenberg, D.
Cohen, M. Labow, M. Reinhardt, F. Natt, and J. Hall, “Design of a Genome-Wide siRNA Library Using an
Artificial Neural Network.” Nature Biotechnology 23:995–1001. 2005. https://doi.org/10.1038/nbt1118.

It also is a powerful tool for biology and medicine. It lets you temporarily “turn off ”
any gene you want. You can use it to treat a disease, or to study what happens when a
gene is disabled. Just identify the mRNA you want to block, select any short segment
of it, and create a siRNA molecule with the complementary sequence.

Except that (of course!) it isn’t as simple as that. You can’t really just pick any segment
of the mRNA at random, because (of course!) RNA molecules aren’t just abstract pat‐
terns of four letters. They are physical objects with distinct properties, and those
properties depend on the sequence. Some RNA molecules are more stable than oth‐
ers. Some bind their complementary sequences more strongly than others. Some fold
into shapes that make it harder for the RISC to bind them. This means that some
siRNA sequences work better than others, and if you want to use RNA interference as
a tool, you need to know how to select a good one!

Biologists have developed lots of heuristics for selecting siRNA sequences. They will
say, for example, that the very first base should be either an A or G, that G and C
bases should make up between 30% and 50% of the sequence, and so on. These heu‐
ristics are helpful, but let’s see if we can do better using machine learning.

We’ll train our model using a library of 2,431 siRNA molecules, each 21 bases long.1

Every one of them has been tested experimentally and labeled with a value between 0
and 1, indicating how effective it is at silencing its target gene. Small values indicate
ineffective molecules, while larger values indicate more effective ones. The model
takes the sequence as input and tries to predict the effectiveness.

Here is the code to build the model:

model = dc.models.TensorGraph()
features = layers.Feature(shape=(None, 21, 4))
labels = layers.Label(shape=(None, 1))
prev = features
for i in range(2):
 prev = layers.Conv1D(filters=10, kernel_size=10,
 activation=tf.nn.relu, padding='same',
 in_layers=prev)
 prev = layers.Dropout(dropout_prob=0.3, in_layers=prev)
output = layers.Dense(out_channels=1, activation_fn=tf.sigmoid,
 in_layers=layers.Flatten(prev))
model.add_output(output)
loss = layers.ReduceMean(layers.L2Loss(in_layers=[labels, output]))
model.set_loss(loss)

This is very similar to the model we used for TF binding, with just a few differences.
Because we are working with shorter sequences and training on less data, we have

RNA Interference | 97

https://doi.org/10.1038/nbt1118

reduced the size of the model. There are only 2 convolutional layers, and 10 filters per
layer instead of 15. There also is no need for weights, since we want every sample to
contribute equally during optimization.

We also use a different loss function. The model for TF binding was a classification
model. Every label was either 0 or 1, and we tried to predict which of those two dis‐
crete values it was. But this one is a regression model. The labels are continuous num‐
bers, and the model tries to match them as closely as possible. We therefore use the L2
distance as our loss function, which tries to minimize the mean squared difference
between the true and predicted labels.

Here is the code to train the model:

train = dc.data.DiskDataset('train_siRNA')
valid = dc.data.DiskDataset('valid_siRNA')
metric = dc.metrics.Metric(dc.metrics.pearsonr, mode='regression')
for i in range(20):
 model.fit(train, nb_epoch=10)
 print(model.evaluate(train, [metric]))
 print(model.evaluate(valid, [metric]))

For TF binding, we used ROC AUC as our evaluation metric, which measures how
accurately the model can divide the data into two classes. That is appropriate for a
classification problem, but it doesn’t make sense for a regression problem, so instead
we use the Pearson correlation coefficient. This is a number between –1 and 1, where
0 means the model provides no information at all and 1 means the model perfectly
reproduces the experimental data.

The result is shown in Figure 6-4. The validation set score peaks at 0.65 after 50
epochs. The training set score continues to increase, but since there is no further
improvement to the validation set score this is just overfitting. Given the simplicity of
the model and the limited amount of training data, a correlation coefficient of 0.65 is
quite good. More complex models trained on larger datasets do slightly better, but
this is already very respectable performance.

98 | Chapter 6: Deep Learning for Genomics

Figure 6-4. Evolution of the Pearson correlation coefficient during training for the train‐
ing set (dashed) and validation set (solid).

Conclusion
A genome is an enormously complicated machine, with a vast number of parts all
working together to direct and carry out the manufacture of proteins and other mole‐
cules. Deep learning is a powerful tool for studying it. Neural networks can pick out
the subtle patterns in genomic data, providing insight into how the genome functions
as well as making predictions about it.

Even more than most other areas of the life sciences, genomics produces huge
amounts of experimental data. For example, a single human genome sequence
includes more than six billion bases. Traditional statistical techniques struggle to find
the signal buried in all that data. They often require simplifying assumptions that do
not reflect the complexity of genomic regulation. Deep learning is uniquely suited to
processing this data and advancing our understanding of the core functions of living
cells.

Conclusion | 99

CHAPTER 7

Machine Learning for Microscopy

In this chapter, we introduce you to deep learning techniques for microscopy. In such
applications, we seek to understand the biological structure of a microscopic image.
For example, we might be interested in counting the number of cells of a particular
type in a given image, or we might seek to identify particular organelles. Microscopy
is one of the most fundamental tools for the life sciences, and advances in microscopy
have greatly advanced human science. Seeing is believing even for skeptical scientists,
and being able to visually inspect biological entities such as cells builds an intuitive
understanding of the underlying mechanisms of life. A vibrant visualization of cell
nuclei and cytoskeletons (as in Figure 7-1) builds a much deeper understanding than
a dry discussion in a textbook.

Figure 7-1. Human-derived SK8/18-2 cells. These cells are stained to highlight their
nuclei and cytoskeletons and imaged using fluorescence microscopy. (Source: Wikime‐
dia.)

101

https://commons.wikimedia.org/wiki/File:SK8-18-2_human_derived_cells,_fluorescence_microscopy_(29942101073).jpg
https://commons.wikimedia.org/wiki/File:SK8-18-2_human_derived_cells,_fluorescence_microscopy_(29942101073).jpg

The question remains how deep learning can make a difference in microscopy. Until
recently, the only way to analyze microscopy images was to have humans (often grad‐
uate students or research associates) manually inspect these images for useful pat‐
terns. More recently, tools such as CellProfiler have made it possible for biologists to
automatically assemble pipelines for handling imaging data.

Automated High-Throughput Microscopy Image Analysis

Advances in automation in the last few decades have made it feasi‐
ble to perform automated high-throughput microscopy on some
systems. These systems use a combination of simple robotics (for
automated handling of samples) and image processing algorithms
to automatically process images. These image processing applica‐
tions such as separating the foreground and background of cells
and obtaining simple cell counts and other basic measurements. In
addition, tools like CellProfiler have allowed biologists without
programming experience to construct new automated pipelines for
handling cellular data.
However, automated microscopy systems have traditionally faced a
number of limitations. For one, complex visual tasks couldn’t be
performed by existing computer vision pipelines. In addition,
properly preparing samples for analysis takes considerable sophis‐
tication on the part of the scientist running the experiment. For
these reasons, automated microscopy has remained a relatively
niche technique, despite its considerable success in enabling
sophisticated new experiments.
Deep learning consequently holds considerable promise for
extending the capabilities of tools such as CellProfiler. If deep anal‐
ysis methods can perform more complex analyses, automated
microscopy could become a considerably more effective tool. For
this reason, there has been considerable research interest in deep
microscopy, as we shall see in the remainder of this chapter.

The hope of deep learning techniques is that they will enable automated microscopy
pipelines to become significantly more flexible. Deep learning systems show promise
at being able to perform nearly any task a human image analyst can. In addition, early
research suggests that deep learning techniques could considerably expand the capa‐
bilities of inexpensive microscopy hardware, potentially allowing cheap microscopes
to perform analyses currently possible only using very sophisticated and expensive
apparatuses.

Looking forward, it is even possible to train deep models that “simulate” experimental
assays. Such systems are capable of predicting the outcomes of experiments (in some
limited cases) without even running the experiment in question. This is a very power‐

102 | Chapter 7: Machine Learning for Microscopy

https://cellprofiler.org/

ful capability, and one which has spurred much excitement about the potential for
deep networks in image-based biology.

In this chapter, we will teach you the basics of deep microscopy. We will demonstrate
how deep learning systems can learn to perform simple tasks such as cell counting
and cellular segmentation. In addition, we will discuss how to build extensible sys‐
tems that could serve to handle more sophisticated image processing pipelines.

A Brief Introduction to Microscopy
Before we dive into algorithms, let’s first talk basics. Microscopy is the science of
using physical systems to view small objects. Traditionally, microscopes were purely
optical devices, using finely ground lenses to expand the resolution of samples. More
recently, the field of microscopy has started to lean heavily on technologies such as
electron beams or even physical probes to produce high-resolution samples.

Microscopy has been tied intimately to the life sciences for centuries. In the 17th cen‐
tury, Anton van Leeuwenhoek used early optical microscopes (of his own design and
construction) to describe microorganisms in unprecedented detail (as shown in
Figure 7-2). These observations depended critically on van Leeuwenhoek’s advances
in microscopy, and in particular on his invention of a new lens which allowed for sig‐
nificantly improved resolution over the microscopes available at the time.

Figure 7-2. A reproduction of van Leeuwenhoek’s microscope constructed in the modern
era. Van Leeuwenhoek kept key details of his lens grinding process private, and a suc‐
cessful reproduction of the microscope wasn’t achieved until the 1950s by scientists in the
United States and the Soviet Union. (Source: Wikimedia.)

The invention of high-resolution optical microscopes triggered a revolution in micro‐
biology. The spread of microscopy techniques and the ability to view cells, bacteria,
and other microorganisms at scale enabled the entire field of microbiology and the

A Brief Introduction to Microscopy | 103

https://en.wikipedia.org/wiki/Antonie_van_Leeuwenhoek#/media/File:Leeuwenhoek_Microscope.png

pathogenic model of disease. It’s hard to overstate the effect of microscopy on the
modern life sciences.

Optical microscopes are either simple or compound. Simple microscopes use only a
single lens for magnification. Compound microscopes use multiple lenses to achieve
higher resolution, but at the cost of additional complexity in construction. The first
practical compound microscopes weren’t achieved until the middle of the 19th cen‐
tury! Arguably, the next major shift in optical microscopy system design didn’t hap‐
pen until the 1980s, with the advent of digital microscopes, which enabled the images
captured by a microscope to be written to computer storage. As we mentioned in the
previous section, automated microscopy uses digital microscopes to capture large
volumes of images. These can be used to conduct large-scale biological experiments
that capture the effects of experimental perturbations.

Modern Optical Microscopy
Despite the fact that optical microscopy has been around for centuries, there’s still
considerable innovation happening in the field. One of the most fundamental techni‐
ques is optical sectioning. An optical microscope has focal planes where the micro‐
scope is currently focused. A variety of techniques to focus the image on a chosen
focal plane have been developed. These focused images can then be stitched together
algorithmically to create a high-resolution image or even a 3D reconstruction of the
original image. Figure 7-3 visually demonstrates how sectioned images of a grain of
pollen can be combined to yield a high-fidelity image.

Confocal microscopes are a common solution to the problem of optical sectioning.
They use a pinhole to block light coming in from out of focus, allowing a confocal
microscope to achieve better depth perception. By shifting the focus of the micro‐
scope and doing a horizontal scan, you can get a full picture of the entire sample with
increased optical resolution and contrast. In an interesting historical aside, the con‐
cept of confocal imaging was first patented by the AI pioneer Marvin Minsky (see
Figure 7-4).

104 | Chapter 7: Machine Learning for Microscopy

Figure 7-3. Pollen grain imaging: (a) optically sectioned fluorescence images of a pollen
grain; (b) combined image; (c) combined image of a group of pollen grains. (Source:
Wikimedia.)

Figure 7-4. An image from Minsky’s original patent introducing a confocal scanning
microscope. In a curious twist of history, Minsky is better known for his pioneering work
in AI. (Source: Wikimedia.)

Well-designed optical sectioning microscopes excel at capturing 3D images of biolog‐
ical systems since scans can be used to focus on multiple parts of the image. These

A Brief Introduction to Microscopy | 105

https://commons.wikimedia.org/wiki/File:Optical_sectioning_of_pollen.jpg
https://en.wikipedia.org/wiki/Confocal_microscopy#/media/File:Minsky_Confocal_Reflection_Microscope.png

focused images can be stitched together algorithmically, yielding beautiful 3D recon‐
structions.

In the next section, we will explore some of the fundamental limits that constrain
optical microscopy and survey some of the techniques that have been designed to
work around these limitations. This material isn’t directly related to deep learning yet
(for reasons we shall discuss), but we think it will give you a valuable understanding
of the challenges facing microscopy today. This intuition will prove useful if you want
to help design the next generation of machine learning–powered microscopy sys‐
tems. However, if you’re in a hurry to get to some code, we encourage you to skip
forward to the subsequent sections where we dive into more immediate applications.

What Can Deep Learning Not Do?

It seems intuitively obvious that deep learning can make an impact
in microscopy, since deep learning excels at image handling and
microscopy is all about image capture. But it’s worth asking: what
parts of microscopy can’t deep learning do much for now? As we
see later in this chapter, preparing a sample for microscopic imag‐
ing can require considerable sophistication. In addition, sample
preparation requires considerable physical dexterity, because the
experimenter must be capable of fixing the sample as a physical
object. How could we possibly automate or speed up this process
with deep learning?
The unfortunate truth right now is that robotic systems are still
very limited. While simple tasks like confocal scans of a sample are
easy to handle, cleaning and preparing a sample requires consider‐
able expertise. It’s unlikely that any robotic systems available in the
near future will have this ability.
Whenever you hear forecasts about the future impact of learning
techniques, it’s useful to keep examples like sample preparation in
mind. Many of the pain points in the life sciences involve tasks
such as sample preparation that just aren’t feasible for today’s
machine learning. That may well change, but likely not for the next
few years at the least.

106 | Chapter 7: Machine Learning for Microscopy

The Diffraction Limit
When studying a new physical instrument such as a microscope, it can be useful to
start by trying to understand its limits. What can’t microscopes do? It turns out this
question has been studied in great depth by previous generations of physicists (with
some recent surprises too!). The first place to start is the diffraction limit, a theoretical
limit on the resolution possible with a microscope:

d = λ
2n sin θ

The quantity n sin θ is often rewritten as the numerical aperture, NA. λ is the wave‐
length of light. Note the implicit assumptions here. We assume that the sample is illu‐
minated with some form of light. Let’s take a quick look at the spectrum of light waves
out there (see Figure 7-5).

Figure 7-5. Wavelengths of light. Note that low-wavelength light sources such as X-rays
are increasingly energetic. As a result, they will often destroy delicate biological samples.

Note how visible light forms only a tiny fraction of this spectrum. In principle, we
should be able to make the desired resolution arbitrarily good using light at a low
enough wavelength. To some extent this has happened already. A number of micro‐
scopes use electromagnetic waves of higher energy. For example, ultraviolet micro‐
scopes use the fact that UV rays have smaller wavelengths to allow for higher
resolution. Couldn’t we take this pattern further and use light of even smaller wave‐
length? For example, why not an X-ray or gamma-ray microscope? The main issue
here is phototoxicity. Light with small wavelengths is highly energetic. Shining such

The Diffraction Limit | 107

light upon a sample can destroy the structure of the sample. In addition, high-
wavelength light is dangerous for the experimenter and requires special experimental
facilities.

Luckily, though, there exist a number of other techniques for bypassing the diffrac‐
tion limit. One uses electrons (which have wavelengths too!) to image samples.
Another uses physical probes instead of light. Yet another method for avoiding the
resolution limit is to make use of near-field electromagnetic waves. Tricks with multi‐
ple illuminated fluorophores can also allow the limit to be lowered. We’ll discuss
these techniques in the following sections.

Electron and Atomic Force Microscopy
In the 1930s, the advent of the electron microscope triggered a dramatic leap in
modern microscopy. The electron microscope uses electron beams instead of visible
light in order to obtain images of objects. Since the wavelengths of electrons are much
smaller than those of visible light, using electron beams instead of light waves allows
much more detailed images. Why does this make any sense? Well, aren’t electrons
particles? Remember that matter can exhibit wave-like properties. This is known as
the de Broglie wavelength, which was first proposed by Louis de Broglie:

λ = h
p = h

mv

Here, h is Planck’s constant and m and v are the mass and velocity of the particle in
question. (For the physicists, note that this formula doesn’t account for relativistic
effects. There are modified versions of the formula that do so.) Electron microscopes
make use of the wave-like nature of electrons to image physical objects. The wave‐
length of an electron depends on its energy, but is easily subnanometer at wave‐
lengths achievable by a standard electron gun. Plugging into the diffraction limit
model discussed previously, it’s easy to see how electron microscopy can be a power‐
ful tool. The first prototype electron microscopes were constructed in the early 1930s.
While these constructions have been considerably refined, today’s electron micro‐
scopes still depend on the same core principles (see Figure 7-6).

108 | Chapter 7: Machine Learning for Microscopy

Figure 7-6. The components of a modern transmission electron microscope. (Source:
Wikimedia.)

Note that we haven’t entirely bypassed the issues with phototoxicity here. To get elec‐
trons with very small wavelengths, we need to increase their energy—and at very
high energy, we will again destroy samples. In addition, the process of preparing sam‐
ples for imaging by an electron microscope can be quite involved. Nevertheless, the
use of electron microscopes has allowed for stunning images of microscopic systems
(see Figure 7-7). Scanning electron microscopes, which scan the input sample to ach‐
ieve larger fields of view,allow for images with resolution as small as one nanometer.

The Diffraction Limit | 109

https://commons.wikimedia.org/wiki/File:Electron_Microscope.png

Figure 7-7. Pollen magnified 500x by a scanning electron microscope. (Source: Wikime‐
dia.)

Atomic force microscopy (AFM) provides another way of breaking through the opti‐
cal diffraction limit. This technique leverages a cantilever which probes a given sur‐
face physically. The direct physical contact between the cantilever and the sample
allows for pictures with resolutions at fractions of a nanometer. Indeed, it is some‐
times possible to image single atoms! Atomic force microscopes also provide for 3D
images of a surface due to the direct contact of the cantilever with the surface at hand.

Force microscopy broadly is a recent technique. The first atomic force microscopes
were only invented in the 1980s, after nanoscale manufacturing techniques had
matured to a point where the probes involved could be accurately made. As a result,
applications in the life sciences are still emergent. There has been some work on
imaging cells and biomolecules with AFM probes, but these techniques are still early.

Super-Resolution Microscopy
We’ve discussed a number of ways to stretch the diffraction limit so far in this chap‐
ter, including using higher-wavelength light or physical probes to allow for greater
resolution. However, in the second half of the 20th century came a scientific break‐
through, led by the realization that there existed entire families of methods for break‐
ing past the diffraction limit. Collectively, these techniques are called super-
resolution microscopy techniques:

110 | Chapter 7: Machine Learning for Microscopy

https://commons.wikimedia.org/wiki/File:Misc_pollen.jpg
https://commons.wikimedia.org/wiki/File:Misc_pollen.jpg

1 Ouyang, Wei, et al. “Deep Learning Massively Accelerates Super-Resolution Localization Microscopy.” Nature
Biotechnology 36 (April 2018): 460–468. https://doi.org/10.1038/nbt.4106.

Functional super-resolution microscopy
Makes use of physical properties of light-emitting substances embedded in the
sample being imaged. For example, fluorescent tags (more on these later) in bio‐
logical microscopy can highlight particular biological molecules. These techni‐
ques allow standard optical microscopes to detect light emitters. Functional
super-resolution techniques can be broadly split into deterministic and stochastic
techniques.

Deterministic super-resolution microscopy
Some light-emitting substances have a nonlinear response to excitation. What
does this actually mean? The idea is that arbitrary focus on a particular light
emitter can be achieved by “turning off ” the other emitters nearby. The physics
behind this is a little tricky, but well-developed techniques such as stimulated
emission depletion (STED) microscopy have demonstrated this technique.

Stochastic super-resolution microscopy
Light-emitting molecules in biological systems are subject to random motion.
This means that if the motion of a light-emitting particle is tracked over time, its
measurements can be averaged to yield a low error estimate of its true position.
There are a number of techniques (such as STORM, PALM, and BALM micro‐
scopy) that refine this basic idea. These super-resolution techniques have had a
dramatic effect in modern biology and chemistry because they allow relatively
cheap optical equipment to probe the behavior of nanoscale systems. The 2014
Nobel Prize in Chemistry was awarded to pioneers of functional super-resolution
techniques.

Deep Super-Resolution Techniques

Recent research has started to leverage the power of deep learning
techniques to reconstruct super-resolution views.1 These techni‐
ques claim orders of magnitude improvements in the speed of
super-resolution microscopy by enabling reconstructions from
sparse, rapidly acquired images. While still in its infancy, this
shows promise as a future application area for deep learning.

Near-field microscopy is another super-resolution technique that makes use of local
electromagnetic information in a sample. These “evanescent waves” don’t obey the
diffraction limit, so higher resolution is possible. However, the trade-off is that the
microscope has to gather light from extremely close to the sample (within one wave‐
length of light from the sample). This means that although near-field techniques

The Diffraction Limit | 111

https://doi.org/10.1038/nbt.4106

2 Tao, Xin, et al. “Scale-Recurrent Network for Deep Image Deblurring.” https://arxiv.org/pdf/1802.01770.pdf.
2018.

make for extremely interesting physics, practical use remains challenging. Very
recently, it has also become possible to construct “metamaterials” which have a nega‐
tive refractive index. In effect, the properties of these materials mean that near-field
evanescent waves can be amplified to allow imaging further away from the sample.
Research in this field is still early but very exciting.

Deep Learning and the Diffraction Limit?
Tantalizing hints suggest that deep learning may facilitate the spread of super-
resolution microscopy. A few early papers have shown that it might be possible for
deep learning algorithms to speed up the construction of super-resolution images or
enable effective super-resolution with relatively cheap hardware. (We point to one
such paper in the previous note.)

These hints are particularly compelling because deep learning can effectively perform
tasks such as image deblurring.2 This evidence suggests that it may be possible to
build a robust set of super-resolution tools based on deep learning that could dramat‐
ically facilitate the adoption of such techniques. At present this research is still imma‐
ture, and compelling tooling doesn’t yet exist. However, we hope that this state of
affairs will change over the coming years.

Preparing Biological Samples for Microscopy
One of the most critical steps in applying microscopy in the life sciences is preparing
the sample for the microscope. This can be a highly nontrivial process that requires
considerable experimental sophistication. We discuss a number of techniques for pre‐
paring samples in this section and comment on the ways in which such techniques
can go wrong and create unexpected experimental artifacts.

Staining
The earliest optical microscopes allowed for magnified views of microscopic objects.
This power enabled amazing improvements in the understanding of small objects,
but it had the major limitation that it was not possible to highlight certain areas of the
image for contrast. This led to the development of chemical stains which permitted
scientists to view regions of the image for contrast.

A wide variety of stains have been developed to handle different types of samples. The
staining procedures themselves can be quite involved, with multiple steps. Stains can
be extraordinarily influential scientifically. In fact, it’s common to classify to bacteria

112 | Chapter 7: Machine Learning for Microscopy

https://arxiv.org/pdf/1802.01770.pdf

as “gram-positive” or “gram-negative” depending on their response to the well known
Gram stain for bacteria. A task for a deep learning system might be to segment and
label the gram-positive and gram-negative bacteria in microscopy samples. If you had
a potential antibiotic in development, this would enable you to study its effect on
gram-positive and gram-negative species separately.

Why Should I Care as a Developer?

Some of you reading this section may be developers interested in
dealing with the challenges of building and deploying deep micro‐
scopy pipelines. You might reasonably be asking yourself whether
you should care about the biology of sample preparation.
If you are indeed laser-focused on the challenges of building pipe‐
lines, skipping ahead to the case studies in this chapter will proba‐
bly help you most. However, building an understanding of basic
sample preparation may save you headaches later on and give you
the vocabulary to effectively communicate with your biologist
peers. If biology requests that you add metadata fields for stains,
this section will give you a good idea of what they’re actually asking
for. That’s worth a few minutes of your time!

Developing Antibacterial Agents for Gram-Negative Bacteria

One of the major challenges in drug discovery at this time is devel‐
oping effective antibiotics for gram-negative bacteria. Gram-
negative bacteria have an additional cell wall that prevents
common antibacterial agents which target the peptidoglycan cell
walls of gram-positive bacteria from functioning effectively.
This challenge is becoming more urgent because many bacterial
strains are picking up gram-negative resistance through methods
such as horizontal gene transfer, and deaths from bacterial infec‐
tions are once again on the rise after decades of control.
It might well be possible to combine the deep learning methods for
molecular design you’ve seen already with some of the imaging-
based techniques you’ll learn in this chapter to make progress on
this problem. We encourage those of you curious about the possi‐
bilities to explore this area more carefully.

Sample Fixation
Large biological samples such as tissue will often degrade rapidly if left to their own
devices. Metabolic processes in the sample will consume and damage the structure of
the organs, cells, and organelles in the sample. The process of “fixation” seeks to stop
this process, and stabilize the contents of the sample so that it can be imaged prop‐

Preparing Biological Samples for Microscopy | 113

erly. A number of fixative agents have been designed which aid in this process. One of
the core functions of fixatives is to denature proteins and turn off proteolytic
enzymes. Such enzymes will consume the sample if allowed.

In addition, the process of fixation seeks to kill microorganisms that may damage the
sample. For example, in heat fixation the sample is passed through a Bunsen burner.
This process can damage the internal structures of the sample as a side effect.
Another common technique is that of immersion fixation, where samples are
immersed in a fixative solution and allowed to soak. For example, a sample could be
soaked in cold formalin for a span of time, such as 24 hours.

Perfusion is a technique for fixing tissue samples from larger animals such as mice.
Experimenters inject fixative into the heart and wait for the mouse to die before
extracting the tissue sample. This process allows for the fixative agent to spread
through the tissue naturally and often yields superior results.

Sectioning Samples
An important part of viewing a biological sample is being able to slice out a thin part
of the sample for the microscope. There exist a number of ingenious tools to facilitate
this process, including the microtome (see Figure 7-8), which slices biological sam‐
ples into thin slices for easy viewing. The microtome has its limitations: it’s hard to
slice very small objects this way. For such small objects, it might be better to use a
technique such as confocal microscopy instead.

It’s worth pausing and asking why it’s useful to know that devices such as a microtome
exist. Well, let’s say that as an engineer, you’re constructing a pipeline to handle a
number of brain imaging samples. The sample brain was likely sliced into thin pieces
using a microtome or similar cutting device. Knowing the physical nature of this pro‐
cess will aid you if you’re (for example) building a schema to organize such images
consistently.

114 | Chapter 7: Machine Learning for Microscopy

Figure 7-8. An early diagram from 1770 depicting a microtome. (Source: Wikimedia.)

Fluorescence Microscopy
A fluorescence microscope is an optical microscope that makes use of the phenom‐
enon of fluorescence, where a sample of material absorbs light at one wavelength and
emits it at another wavelength. This is a natural physical phenomenon; for example, a
number of minerals fluoresce when exposed to ultraviolet light. It gets particularly
interesting when applied to biology, though. A number of bacteria fluoresce naturally
when their proteins absorb high-energy light and emit lower-energy light.

Fluorophores and fluorescent tags
A fluorophore is a chemical compound that can reemit light at a certain wavelength.
These compounds are a critical tool in biology because they allow experimentalists to
image particular components of a given cell in detail. Experimentally, the fluorophore
is commonly applied as a dye to a particular cell. Figure 7-9 shows the molecular
structure of a common fluorophore.

Preparing Biological Samples for Microscopy | 115

https://commons.wikimedia.org/wiki/File:Cummings_1774_Microtome.jpg

Figure 7-9. DAPI (4',6-diamidino-2-phenylindole) is a common fluorescent stain that
binds to adenine-thymine–rich regions of DNA. Because it passes through cell mem‐
branes, it is commonly used to stain the insides of cells. (Source: Wikimedia.)

Fluorescent tagging is a technique for attaching a fluorophore to a biomolecule of
interest in the body. There are a variety of techniques to do this effectively. It’s useful
in microscopy imaging, where it’s common to want to highlight a particular part of
the image. Fluorescent tagging can enable this very effectively.

Fluorescent microscopy has proven a tremendous boon for biological research
because it permits researchers to zoom in on specific subsystems in a given biological
sample, as opposed to dealing with the entirety of the sample. When studying indi‐
vidual cells, or individual molecules within a cell, the use of tagging can prove invalu‐
able for focusing attention on interesting subsystems. Figure 7-10 shows how a
fluorescent stain can be used to selectively visualize particular chromosomes within a
human cell nucleus.

Figure 7-10. An image of a human lymphocyte nucleus with chromosomes 13 and 21
stained with DAPI (a popular fluorescent stain) to emit light. (Source: Wikimedia.)

116 | Chapter 7: Machine Learning for Microscopy

https://commons.wikimedia.org/wiki/File:DAPI.svg
https://commons.wikimedia.org/wiki/File:FISH_13_21.jpg

Fluorescence microscopy can be a very precise tool, used to track events like single
binding events of molecules. For example, binding events of proteins to ligands (as
discussed in Chapter 5) can be detected by a fluorescence assay.

Sample Preparation Artifacts
It’s important to note that sample preparation can be a deeply tricky process. It’s com‐
mon for the preparation of the original sample to induce distortions in the object
being imaged, which can lead to some confusion. An interesting example is the case
of the mesosome, discussed in the following warning note.

The Mesosome: An Imaginary Organelle
The process of fixing a cell for electron microscopy introduces a crucial artifact, the
mesosome in gram-positive bacteria (see Figure 7-11). Degradations in the cell wall,
caused by the process of preparing the sample for the electron microscope, were orig‐
inally thought to be natural structures instead of artifacts.

Be warned that similar artifacts likely exist in your own samples. In addition, it’s
entirely possible that a deep network could train itself to detect such artifacts rather
than training itself to find real biology.

Figure 7-11. Mesosomes are artifacts introduced by preparation for electron microscopy
that were once believed to be real structures in cells. (Adapted from Wikimedia.)

Preparing Biological Samples for Microscopy | 117

https://en.wikipedia.org/wiki/Mesosome#/media/File:Mesosome_formation.svg

Tracking Provenance of Microscopy Samples

When you’re designing systems to handle microscopy data, it will
be critical to track the provenance of your samples. Each image
should be annotated with information about the conditions in
which it was gathered. This might include the physical device that
was used to capture the image, the technician who supervised the
imaging process, the sample that was imaged, and the physical
location at which the sample was gathered. Biology is extraordinar‐
ily tricky to “debug.” Issues such as the one described in the previ‐
ous warning can go untracked, potentially for decades. Making
sure to maintain adequate metadata around the provenance of your
images could save you and your team from major issues down the
line.

Deep Learning Applications
In this section we briefly review various applications of deep learning to microscopy,
such as cell counting, cell segmentation, and computational assay construction. As
we’ve noted previously in the chapter, this is a limited subset of the applications possi‐
ble for deep microscopy. However, understanding these basic applications will give
you the understanding needed to invent new deep microscopy applications of your
own.

Cell Counting
A simple task is to count the number of cells that appear in a given image. You might
reasonably ask why this is an interesting task. For a number of biological experi‐
ments, it can be quite useful to track the number of cells that survive after a given
intervention. For example, perhaps the cells are drawn from a cancer cell line, and the
intervention is the application of an anticancer compound. A successful intervention
would reduce the number of living cancer cells, so it would be useful to have a deep
learning system that can count the number of such living cells accurately without
human intervention.

What Is a Cell Line?
Often in biology, it’s useful to study cells of a given type. The first step in running an
experiment against a collection of cells is to gain a plentiful supply of such cells. Enter
the cell line. Cell lines are cells cultivated from a given source and that can grow sta‐
bly in laboratory conditions.

Cell lines have been used in countless biological papers, but there are often serious
concerns about the science done on them. To start, removing a cell from its natural

118 | Chapter 7: Machine Learning for Microscopy

environment can radically change its biology. A growing line of evidence shows that
the environment of a cell can fundamentally shape its response to stimuli.

Even more seriously, cell lines are often contaminated. Cells from one cell line may
contaminate cells from another cell line, so results on a “breast cancer” cell line may,
in fact, tell the researcher absolutely nothing about breast cancer!

For these reasons, studies on cell lines are often treated with caution, with the results
intended simply as spur to attempt duplication with animal or human tests. Never‐
theless, cell line studies provide an invaluable easy entry point to biological research
and remain ubiquitous.

Figure 7-12. Samples of Drosophila cells. Note how the image conditions in microscopy
images can be significantly different from image conditions in photographs. (Source: Cell
Image Library.)

As Figure 7-12 shows, image conditions in cell microscopy can be significantly differ‐
ent from standard image conditions, so it is not immediately obvious that technolo‐
gies such as convolutional neural networks can be adapted to tasks such as cell
counting. Luckily, significant experimental work has shown that convolutional net‐
works do quite well at learning from microscopy datasets.

Implementing cell counting in DeepChem
This section walks through the construction of a deep learning model for cell count‐
ing using DeepChem. We’ll start by loading and featurizing a cell counting dataset.
We use the Broad Bioimage Benchmark Collection (BBBC) to get access to a useful
microscopy dataset for this purpose.

BBBC Datasets

The BBBC datasets contain a useful collection of annotated bio‐
image datasets from various cellular assays. It is a useful resource
as you work on training your own deep microscopy models. Deep‐
Chem has a collection of image processing resources to make it
easier to work with these datasets. In particular, DeepChem’s Image
Loader class facilitates loading of the datasets.

Deep Learning Applications | 119

http://cellimagelibrary.org/images/21780
http://cellimagelibrary.org/images/21780
https://data.broadinstitute.org/bbbc/

Processing Image Datasets

Images are usually stored on disk in standard image file formats
(PNG, JPEG, etc.). The processing pipeline for image datasets typi‐
cally reads in these files from disk and transforms them into a suit‐
able in-memory representation, typically a multidimensional array.
In Python processing pipelines, this array is often simply a NumPy
array. For an image N pixels high, M pixels wide, and with 3 RGB
color channels, you would get an array of shape (N, M, 3). If you
have 10 such images, these images would typically be batched into
an array of shape (10, N, M, 3).

Before you can load the dataset into DeepChem, you’ll first need to download it
locally. The BBBC005 dataset that we’ll use for this task is reasonably large (a little
under 2 GB), so make sure your development machine has sufficient space available:

wget https://data.broadinstitute.org/bbbc/BBBC005/BBBC005_v1_images.zip
unzip BBBC005_v1_images.zip

With the dataset downloaded to your local machine, you can now load this dataset
into DeepChem by using ImageLoader:

image_dir = 'BBBC005_v1_images'
files = []
labels = []
for f in os.listdir(image_dir):
 if f.endswith('.TIF'):
 files.append(os.path.join(image_dir, f))
 labels.append(int(re.findall('_C(.*?)_', f)[0]))
loader = dc.data.ImageLoader()
dataset = loader.featurize(files, np.array(labels))

This code walks through the downloaded directory of images and pulls out the image
files. The labels are encoded in the filenames themselves, so we use a simple regular
expression to extract the number of cells in each image. We use ImageLoader to
transform this into a DeepChem dataset.

Let’s now split this dataset into training, validation, and test sets:

splitter = dc.splits.RandomSplitter()
train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
 dataset, seed=123)

With this split in place, we can now define the model itself. In this case, let’s make a
simple convolutional architecture with a fully connected layer at the end:

learning_rate = dc.models.tensorgraph.optimizers.ExponentialDecay(0.001, 0.9,
 250)
model = dc.models.TensorGraph(learning_rate=learning_rate, model_dir='model')
features = layers.Feature(shape=(None, 520, 696))
labels = layers.Label(shape=(None,))

120 | Chapter 7: Machine Learning for Microscopy

prev_layer = features
for num_outputs in [16, 32, 64, 128, 256]:
 prev_layer = layers.Conv2D(num_outputs, kernel_size=5, stride=2,
 in_layers=prev_layer)
output = layers.Dense(1, in_layers=layers.Flatten(prev_layer))
model.add_output(output)
loss = layers.ReduceSum(layers.L2Loss(in_layers=(output, labels)))
model.set_loss(loss)

Note that we use L2Loss to train our model as a regression task. Even though cell
counts are whole numbers, we don’t have a natural upper bound on the number of
cells in an image.

Training this model will take some computational effort (more on this momentarily),
so to start, we recommend using our pretrained model for basic experimentation.
This model can be used to make predictions out of the box. There are directions on
downloading the pretrained model in the code repository associated with the book.
Once you’ve downloaded it, you can load the pretrained weights into the model with:

model.restore()

Let’s take this pretrained model out for a whirl. First, we’ll compute the average pre‐
diction error on our test set for our cell counting task:

y_pred = model.predict(test_dataset).flatten()
print(np.sqrt(np.mean((y_pred-test_dataset.y)**2)))

What accuracy do you get when you try running the model?

Now, how can you train this model for yourself? You can fit the model by training it
for 50 epochs on the dataset:

model.fit(train_dataset, nb_epoch=50)

This learning task will take some amount of computing horsepower. On a good GPU,
it should complete within an hour or so. It may not be feasible to easily train the
model on a CPU system.

Once trained, test the accuracy of the model on the validation and test sets. Does it
match that of the pretrained model?

Cell Segmentation
The task of cellular segmentation involves annotating a given cellular microscopy
image to denote where cells appear and where background appears. Why is this use‐
ful? If you recall our earlier discussion of gram-positive and gram-negative bacteria,
you can probably guess why an automated system for separating out the two types of
bacteria might prove useful. It turns out that similar problems arise through all of cel‐
lular microscopy (and in other fields of imaging, as we will see in Chapter 8).

Deep Learning Applications | 121

https://github.com/deepchem/DeepLearningLifeSciences

Segmentation masks provide significantly finer-grained resolution and permit for
more refined analysis than cell counting. For example, it might be useful to under‐
stand what fraction of a given plate is covered with cells. Such analysis is easy to per‐
form once segmentation masks have been generated. Figure 7-13 provides an
example of a segmentation mask that is generated from a synthetic dataset.

Figure 7-13. A synthetic dataset of cells (on the left) along with foreground/background
masks annotating where cells appear in the image. (Source: Broad Institute.)

That said, segmentation asks for significantly more from a machine learning model
than counting. Being able to precisely differentiate cellular and noncellular regions
requires greater precision in learning. For that reason, it’s not surprising that machine
learning segmentation approaches are still harder to get working than simpler cellular
counting approaches. We will experiment with a segmentation model later in this
chapter.

122 | Chapter 7: Machine Learning for Microscopy

https://data.broadinstitute.org/bbbc/BBBC005/

Where Do Segmentation Masks Come From?

It’s worth pausing to note that segmentation masks are complex
objects. There don’t exist good algorithms (except for deep learning
techniques) for generating such masks in general. How then can we
bootstrap the training data needed to refine a deep segmentation
technique? One possibility is to use synthetic data, as in
Figure 7-13. Because the cellular image is generated in a synthetic
fashion, the mask can also be synthetically generated. This is a use‐
ful trick, but it has obvious limitations because it will limit our
learned segmentation methods to similar images.
A more general procedure is to have human annotators generate
suitable segmentation masks. Similar procedures are used widely to
train self-driving cars. In that task, finding segmentations that
annotate pedestrians and street signs is critical, and armies of
human segmenters are used to generate needed training data. As
machine-learned microscopy grows in importance, it is likely that
similar human pipelines will become critical.

Implementing cell segmentation in DeepChem
In this section, we will train a cellular segmentation model on the same BBBC005
dataset that we used previously for the cell counting task. There’s a crucial subtlety
here, though. In the cell counting challenge, each training image has a simple count
as a label. However, in the cellular segmentation task, each label is itself an image.
This means that a cellular segmentation model is actually a form of “image trans‐
former” rather than a simple classification or regression model. Let’s start by obtain‐
ing this dataset. We have to retrieve the segmentation masks from the BBBC website,
using the following commands:

wget https://data.broadinstitute.org/bbbc/BBBC005/BBBC005_v1_ground_truth.zip
unzip BBBC005_v1_ground_truth.zip

The ground-truth data is something like 10 MB, so it should be easier to download
than the full BBBC005 dataset. Now let’s load this dataset into DeepChem. Luckily for
us, ImageLoader is set up to handle image segmentation datasets without much extra
hassle:

image_dir = 'BBBC005_v1_images'
label_dir = 'BBBC005_v1_ground_truth'
rows = ('A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L',
 'M', 'N', 'O', 'P')
blurs = (1, 4, 7, 10, 14, 17, 20, 23, 26, 29, 32, 35, 39, 42, 45, 48)
files = []
labels = []
for f in os.listdir(label_dir):
 if f.endswith('.TIF'):
 for row, blur in zip(rows, blurs):

Deep Learning Applications | 123

 fname = f.replace('_F1', '_F%d'%blur).replace('_A', '_%s'%row)
 files.append(os.path.join(image_dir, fname))
 labels.append(os.path.join(label_dir, f))
loader = dc.data.ImageLoader()
dataset = loader.featurize(files, labels)

Now that we have our datasets loaded and processed, let’s hop into building some
deep learning models for them. As before, we’ll split this dataset into training, valida‐
tion, and test sets:

splitter = dc.splits.RandomSplitter()
train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
 dataset, seed=123)

What architecture can we use for the task of image segmentation? It’s not just a mat‐
ter of using a straightforward convolutional architecture since our output needs to
itself be an image (the segmentation mask). Luckily for us, there has been some past
work on suitable architectures for this task. The U-Net architecture uses a stacked
series of convolutions to progressively “downsample” and then “upsample” the source
image, as illustrated in Figure 7-14. This architecture does well at the task of image
segmentation.

Figure 7-14. A representation of the U-Net architecture for biomedical image segmenta‐
tion. (Adapted from the University of Freiburg.)

Let’s now implement the U-Net in DeepChem:

learning_rate = dc.models.tensorgraph.optimizers.ExponentialDecay(0.01, 0.9, 250)
model = dc.models.TensorGraph(learning_rate=learning_rate,
 model_dir='segmentation')
features = layers.Feature(shape=(None, 520, 696, 1)) / 255.0
labels = layers.Label(shape=(None, 520, 696, 1)) / 255.0
Downsample three times.
conv1 = layers.Conv2D(16, kernel_size=5, stride=2, in_layers=features)
conv2 = layers.Conv2D(32, kernel_size=5, stride=2, in_layers=conv1)

124 | Chapter 7: Machine Learning for Microscopy

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

conv3 = layers.Conv2D(64, kernel_size=5, stride=2, in_layers=conv2)
Do a 1x1 convolution.
conv4 = layers.Conv2D(64, kernel_size=1, stride=1, in_layers=conv3)
Upsample three times.
concat1 = layers.Concat(in_layers=[conv3, conv4], axis=3)
deconv1 = layers.Conv2DTranspose(32, kernel_size=5, stride=2, in_layers=concat1)
concat2 = layers.Concat(in_layers=[conv2, deconv1], axis=3)
deconv2 = layers.Conv2DTranspose(16, kernel_size=5, stride=2, in_layers=concat2)
concat3 = layers.Concat(in_layers=[conv1, deconv2], axis=3)
deconv3 = layers.Conv2DTranspose(1, kernel_size=5, stride=2, in_layers=concat3)
Compute the final output.
concat4 = layers.Concat(in_layers=[features, deconv3], axis=3)
logits = layers.Conv2D(1, kernel_size=5, stride=1, activation_fn=None,
 in_layers=concat4)
output = layers.Sigmoid(logits)
model.add_output(output)
loss = layers.ReduceSum(layers.SigmoidCrossEntropy(in_layers=(labels, logits)))
model.set_loss(loss)

This architecture is somewhat more complex than that for cell counting, but we use
the same basic code structure and stack convolutional layers to achieve our desired
architecture. As before, let’s use a pretrained model to give this architecture a try.
Directions for downloading the pretrained model are available in the book’s code
repository. Once you’ve got the pretrained weights in place, you can load the weights
as before:

model.restore()

Let’s use this model to create some masks. Calling model.predict_on_batch() allows
us to predict the output mask for a batch of inputs. We can check the accuracy of our
predictions by comparing our masks against the ground-truth masks and checking
the overlap fraction:

scores = []
for x, y, w, id in test_dataset.itersamples():
 y_pred = model.predict_on_batch([x]).squeeze()
 scores.append(np.mean((y>0) == (y_pred>0.5)))
print(np.mean(scores))

This should return approximately 0.9899. This means nearly 99% of pixels are cor‐
rectly predicted! It’s a neat result, but we should emphasize that this is a toy learning
task. A simple image processing algorithm with a brightness threshold could likely do
almost as well. Still, the principles exposed here should carry over to more complex
image datasets.

OK, now that we’ve explored with the pretrained model, let’s train a U-Net from
scratch for 50 epochs and see what results we obtain:

model.fit(train_dataset, nb_epoch=50, checkpoint_interval=100)

Deep Learning Applications | 125

https://github.com/deepchem/DeepLearningLifeSciences
https://github.com/deepchem/DeepLearningLifeSciences

3 Christensen, Eric. “In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images.” https://github.com/
google/in-silico-labeling.

As before, this training is computationally intensive and will take a couple of hours
on a good GPU. It may not be feasible to train this model on a CPU system. Once the
model is trained, try running the results for yourself and seeing what you get. Can
you match the accuracy of the pretrained model?

Computational Assays
Cell counting and segmentation are fairly straightforward visual tasks, so it’s perhaps
unsurprising that machine learning models are capable of performing well on such
datasets. It could reasonably be asked if that’s all machine learning models are capable
of.

Luckily, it turns out the answer is no! Machine learning models are capable of picking
up on subtle signals in the dataset. For example, one study demonstrated that deep
learning models are capable of predicting the outputs of fluorescent labels from the
raw image.3 It’s worth pausing to consider how surprising this result is. As we saw in
“Preparing Biological Samples for Microscopy” on page 112, fluorescent staining can
be a considerably involved procedure. It’s astonishing that deep learning might be
able to remove some of the needed preparation work.

This is an exciting result, but it’s worth noting that it’s still an early one. Considerable
work will have to be done to “robustify” these techniques so they can be applied more
broadly.

Conclusion
In this chapter, we’ve introduced you to the basics of microscopy and to some basic
machine learning approaches to microscopy systems. We’ve provided a broad intro‐
duction to some of the fundamental questions of modern microscopy (especially as
applied to biological problems) and have discussed where deep learning has already
had an impact and hinted at places where it could have an even greater impact in the
future.

We’ve also provided a thorough overview of some of the physics and biology sur‐
rounding microscopy, and tried to convey why this information might be useful even
if to developers who are primarily interested in building effective pipelines for han‐
dling microscopy images and models. Knowledge of physical principles such as the
diffraction limit will allow you to understand why different microscopy techniques
are used and how deep learning might prove critical for the future of the field.
Knowledge of biological sample preparation techniques will help you understand the

126 | Chapter 7: Machine Learning for Microscopy

https://github.com/google/in-silico-labeling
https://github.com/google/in-silico-labeling

4 Rosenfeld, Amir, Richard Zemel, and John K. Tsotsos. “The Elephant in the Room.” https://arxiv.org/abs/
1808.03305. 2018.

types of metadata and annotations that will be important to track when designing a
practical microscopy system.

While we’re very excited about the potential applications of deep learning techniques
in microscopy, it’s important for us to emphasize that these methods come with a
number of caveats. For one, a number of recent studies have highlighted the brittle‐
ness of visual convolutional models.4 Simple artifacts can trip up such models and
cause significant issues. For example, the image of a stop sign could be slightly pertur‐
bed so that a model classifies it as a green traffic light. That would be disastrous for a
self-driving car!

Given this evidence, it’s worth asking what the potential pitfalls are with models for
deep microscopy. Is it possible that deep microscopy models are simply backfilling
from memorized previous data points? Even if this isn’t the entire explanation for
their performance, it is likely that at least part of the power of such deep models
comes from such regurgitation of memorized data. This could very well result in
imputation of spurious correlations. As a result, when doing scientific analysis on
microscopic datasets, it will be critical to stop and question whether your results are
due to model artifacts or genuine biological phenomena. We will provide some tools
for you to critically probe models in upcoming chapters so you can better determine
what your model has actually learned.

In the next chapter, we will explore applications of deep learning for medicine. We
will reuse many of the skills for visual deep learning that we covered in this chapter.

Conclusion | 127

https://arxiv.org/abs/1808.03305
https://arxiv.org/abs/1808.03305

1 See Dendral or Mycin on Wikipedia for more information.

CHAPTER 8

Deep Learning for Medicine

As we saw in the previous chapter, the ability to extract meaningful information from
visual datasets can prove useful for analyzing microscopy images. This capability for
handling visual data is similarly useful for medical applications. Much of modern
medicine requires doctors to critically analyze medical scans. Deep learning tools
could potentially make this analysis easier and faster (but perhaps less interpretable).

Let’s learn more. We’ll start by giving you a brief overview of earlier computational
techniques for medicine. We’ll discuss some of the limitations of such methods, then
we’ll start running over the current set of deep learning–powered techniques for
medicine. We’ll explain how these new techniques might allow us to bypass some of
the fundamental limitations of older techniques. We’ll end the chapter with a discus‐
sion of some of the ethical considerations of applying deep learning to medicine.

Computer-Aided Diagnostics
Designing computer-aided diagnostic systems has been a major focus of AI research
since the advent of the field. The earliest attempts at this1 used hand-curated knowl‐
edge bases. In these systems, expert doctors would be solicited to write down causal
inference rules (see, for example, Figure 8-1).

There was basic support for uncertainty handling through certainty factors.

129

https://en.wikipedia.org/wiki/Dendral
https://en.wikipedia.org/wiki/Mycin

Figure 8-1. MYCIN was an early expert system used to diagnose bacterial infections.
This is an example of a MYCIN rule for inference (adapted from the University of Sur‐
rey).

These rules were combined using a logical engine. A number of efficient inference
techniques were designed that could effectively combine large databases of rules.
Such systems were traditionally called “expert systems.”

What Happened to Expert Systems?

Although expert systems achieved some notable successes, the con‐
struction of these systems required considerable effort. Rules had
to be painstakingly solicited from experts and curated by trained
“knowledge engineers.” While some expert systems achieved strik‐
ing results in limited domains, on the whole they were too brittle to
use widely. That said, expert systems had a strong impact on much
of computer science, and hosts of modern technologies (SQL,
XML, Bayesian networks and more) draw inspiration from expert
system technologies.
If you’re a developer, it’s good to pause and consider this. Although
expert systems were once a blindingly hot technology, they cur‐
rently exist primarily as a historical curiosity. It’s very likely that
most of today’s hot technologies will one day end up in the curios‐
ity heap of computer science history. This is a feature, not a bug, of
computer science. The field reinvents itself rapidly, so we can trust
that the replacements for today’s technologies will tick some crucial
boxes that today’s tools can’t. At the same time, as with expert sys‐
tems, we can rest assured that the algorithmic fundamentals of
today’s technology will live on in tomorrow’s tools.

130 | Chapter 8: Deep Learning for Medicine

http://www.computing.surrey.ac.uk/ai/PROFILE/mycin.html#Certainity%20Factors
http://www.computing.surrey.ac.uk/ai/PROFILE/mycin.html#Certainity%20Factors

2 Asabere, Nana Yaw. “mMes: A Mobile Medical Expert System for Health Institutions in Ghana.” International
Journal of Science and Technology no.6. (June 2012). https://pdfs.semanticscholar.org/ed35/
ec162c5916f317162e11e390440bdb1b55b2.pdf.

Expert systems for medicine had a good run. Some of them were deployed widely and
adopted internationally as well.2 However, these systems failed to achieve significant
traction with everyday doctors and nurses. One problem was that they were very fin‐
icky and hard to use. They also required their users to be able to pass in patient infor‐
mation in a highly structured format. Given that computers had barely penetrated
standard clinics at the time, requiring highly specialized training for doctors and
nurses proved to be too big an ask.

Probabilistic Diagnoses with Bayesian Networks
Another major problem with expert system tools was that they could only provide
deterministic predictions. These deterministic predictions didn’t leave much room
for uncertainty. What if the doctor was seeing a tricky patient where the diagnosis
wasn’t clear? For a time, it seemed that if expert systems could be modified to account
for uncertainties, this would allow them to achieve success.

This basic insight triggered a host of work on Bayesian networks for clinical diagno‐
ses. (One of the authors of this book spent a year working on such a system as an
undergrad.) However, these systems suffered from many of the same limitations as
the expert systems. It was still necessary to solicit structural knowledge from doctors,
and designers of Bayesian clinical networks faced the additional challenge of solicit‐
ing meaningful probabilities from doctors. This process added significant overhead
to the process of adoption.

In addition, training a Bayesian network can be complicated. Different types of Baye‐
sian network require different algorithms. Contrast this with deep learning algo‐
rithms, where gradient descent techniques work on almost all networks you can find.
Robustness of learning is often what enables widespread adoption. This basic insight
triggered a host of work on Bayesian networks for clinical diagnoses. (See Figure 8-2
for a simple example of a Bayesian network.)

Probabilistic Diagnoses with Bayesian Networks | 131

https://pdfs.semanticscholar.org/ed35/ec162c5916f317162e11e390440bdb1b55b2.pdf
https://pdfs.semanticscholar.org/ed35/ec162c5916f317162e11e390440bdb1b55b2.pdf

Figure 8-2. A simple example of a Bayesian network for inferring whether the grass is
wet at a given spot. (Source: Wikimedia.)

Ease of Use Drives Adoption

Expert systems and Bayesian networks both failed to win broad
adoption. At least part of the reason for this failure was that both
these systems had pretty terrible developer experiences. From the
developer’s standpoint, designing either a Bayesian network or an
expert system required constantly keeping a doctor in the develop‐
ment loop. In addition, the effectiveness of the system depended
critically on the ability of the development team to extract valuable
insights from doctors.
Contrast this with deep networks. For a given data type (images,
molecules, text, etc.) and a given learning task, there are a set of
standard metrics at hand. The developer needs only to follow best
statistical practices (as taught by this or another book) in order to
build a functional system. The dependence on expert knowledge is
considerably reduced. This gain in simplicity no doubt accounts for
part of the reason deep networks have gained much broader adop‐
tion.

Electronic Health Record Data
Traditionally, hospitals maintained paper charts for their patients. These charts would
record the tests, medications, and other treatments of the patient, allowing doctors to
track the patient’s health with a quick glance at the chart. Unfortunately, paper health
records had a host of difficulties associated with them. Transferring records between
hospitals required a major amount of work, and it wasn’t easy to index or search
paper health record data.

132 | Chapter 8: Deep Learning for Medicine

https://commons.wikimedia.org/wiki/File:SimpleBayesNet.svg

For this reason, there has been a major push over the last few decades in a number of
countries to move from paper records to electronic health records (EHRs). In the US,
the adoption of the Affordable Care Act significantly accelerated their adoption, and
most major US health providers now store their patient records on EHR systems.

The broad adoption of EHR systems has spurred a boom in research on machine
learning systems that work with EHR data. These systems aim to use large datasets of
patient records to train models that will be capable of predicting things such as
patient outcomes or risks. In many ways, these EHR models are the intellectual suc‐
cessors of the expert systems and Bayesian networks we just learned about. Like these
earlier systems, EHR models seek to aid the process of diagnosis. However, while ear‐
lier systems sought to aid doctors in making real-time diagnoses, these newer systems
content themselves (mostly) with working on the backend.

A number of projects have attempted to learn robust models from EHR data. While
there have been some notable successes, learning on EHR data remains challenging
for practitioners. Due to privacy concerns, there aren’t many large public EHR data‐
sets available. As a result, only a small group of elite researchers have been able to
design these systems thus far. In addition, EHR data tends to be very messy. Since
human doctors and nurses manually enter information, most EHR data suffers from
missing fields and all sorts of different conventions. Creating robust models that deal
with the missing data has proven challenging.

ICD-10 Codes
ICD-10 is a set of “codes” for patient diseases and symptoms. These standard codes
have found broad adoption in recent years because they allow insurers and govern‐
mental agencies to set standard practices, treatments, and treatment prices for disea‐
ses.

The ICD-10 codes “quantize” (make discrete) the high-dimensional continuous space
of human disease. By standardizing, they allow doctors to compare and group
patients. It’s worth noting that for this reason, such codes will likely prove relevant to
developers of EHR systems and models. If you’re designing the data warehouse for a
new EHR system, make sure you think about where you’re going to put your codes!

Electronic Health Record Data | 133

3 Mandel, JC, et al. “SMART on FHIR: A Standards-Based, Interoperable Apps Platform for Electronic Health
Records.” https://doi.org/10.1093/jamia/ocv189. 2016.

4 Rajkomar, Alvin et al. “Scalable and Accurate Deep Learning with Electronic Health Records.” NPJ Digital
Medicine. https://arxiv.org/pdf/1801.07860.pdf. 2018.

5 Miotto, Riccardo, Li Li, Brian A. Kidd and Joel T. Dudley. “Deep Patient: An Unsupervised Representation to
Predict the Future of Patients from the Electronic Health Records.” https://doi.org/10.1038/srep26094. 2016.

Fast Healthcare Interoperability Resources (FHIR)

The Fast Healthcare Interoperability Resources (FHIR) specifica‐
tion was developed to represent clinical data in a standard and flex‐
ible format.3 Recent work from Google demonstrated how raw
EHR data can be transformed into FHIR format automatically.4
The use of this format enables the development of standard deep
architectures that can be applied to arbitrary EHR data, which
means standard open source tools for this data can be used in a
plug-and-play fashion. This work is still in early stages, but it rep‐
resents exciting progress for the field. Although standardization
may appear boring at first blush, it’s the foundation for future
advances since it means that larger datasets can be worked with
productively.

However, this state of affairs is starting to change. Improved tools, both for prepro‐
cessing and for learning, have started to enable effective learning to occur on EHR
systems. The DeepPatient system trains a denoising autoencoder on patient medical
records to create a patient representation which it then uses to predict patient out‐
comes.5 In this system, a patient’s record is transformed from a set of unordered tex‐
tual information into a vector. This strategy of transforming disparate data types into
vectors has been widely successful throughout deep learning and seems poised to
offer meaningful improvements in EHR systems as well. A number of models based
on EHR systems have sprouted in the literature, many of which are starting to incor‐
porate the latest tools of deep learning, such as recurrent networks or reinforcement
learning. While models with these latest bells and whistles are still maturing, they’re
very exciting and provide pointers to where the field is likely to head over the next
few years.

What About Unsupervised Learning?
Through most of this book, we’ve primarily demonstrated supervised learning meth‐
ods. There’s also a whole class of “unsupervised” learning methods that don’t share
the same dependency on supervised training data. We haven’t really introduced unsu‐
pervised learning as a concept yet, but the basic idea is that we no longer have labels

134 | Chapter 8: Deep Learning for Medicine

https://doi.org/10.1093/jamia/ocv189
https://arxiv.org/pdf/1801.07860.pdf
https://doi.org/10.1038/srep26094

associated with data points. For example, imagine we have a set of EHR records but
no patient outcome data. What can we do?

The simplest answer is that we can cluster the records. For a toy example, imagine we
have “twin” patients whose EHR records are identical. It seems reasonable to predict
that the outcomes of these two patients will be similar. Unsupervised learning techni‐
ques such as k-means or autoencoders implement somewhat more sophisticated
forms of this basic intuition. You’ll see a sophisticated example of an unsupervised
algorithm later in Chapter 9.

Unsupervised techniques can yield some compelling insights, but these methods can
be hit-or-miss at times. While there have been some compelling use cases, such as
DeepPatient, on the whole unsupervised methods are still finicky enough that they
have yet to see wide usage. If you’re a researcher, though, working on ways to stabilize
unsupervised learning remains a compelling (and challenging) open problem.

The Dangers of Large Patient EHR Databases?
A number of large institutions are moving toward having all their patients in EHR
systems. What happens when these large datasets are standardized (perhaps in a for‐
mat such as FHIR) and made interoperable? On the positive side, it might be possible
then to support applications such as searching for patients that have a particular dis‐
ease phenotype. Such focused search capabilities may help doctors find treatments
more effectively for patients, and especially for patients with rare diseases.

However, it doesn’t take much imagination to see how large patient databases could
be put to malicious use. For example, insurers could use patient outcome systems to
preemptively deny insurance to higher-risk patients, or top surgeons seeking to main‐
tain high patient survival rates could avoid operating on patients that the system
marks as high risk. How do we guard against these dangers?

Many of the questions that machine learning systems raise can’t be addressed with the
tools of machine learning. Rather, it’s likely that the answers to these questions will
rest with legislation that forbids predatory behavior on the part of doctors, insurers,
and others.

Electronic Health Record Data | 135

6 Gawande, Atul. “Why Doctors Hate Their Computers.” The New Yorker. https://www.newyorker.com/maga‐
zine/2018/11/12/why-doctors-hate-their-computers. 2018.

Do EHRs Really Help Doctors?

While EHRs obviously aid in the design of learning algorithms,
there’s less compelling evidence that EHRs actually improve life for
doctors. Part of the challenge is that today’s EHRs require signifi‐
cant manual data entry on the part of doctors. For patients, this has
created a new familiar dynamic in which the doctor spends the
majority of a consultation looking at the computer rather than
looking at the actual patient.
This state of affairs has left both patients and doctors unhappy.6
Doctors feel burned out because they spend the majority of their
time doing clerical data entry rather than patient care, and patients
feel ignored. One hope for the next generation of deep learning–
powered systems is that this imbalance could be improved by
future products.
Note, however, that there’s a real chance that the next generation of
deep learning tools could prove equally unfriendly and unhelpful
for doctors. The designers of EHR systems didn’t aim to make
unfriendly systems either.

Deep Radiology
Radiology is the science of using medical scans to diagnose disease. There are a vari‐
ety of different scans that doctors use, such as MRI scans, ultrasounds, X-rays, and
CT scans. For each of these, the challenge is to diagnose the state of the patient from
the given scan imagery. This looks like a challenge well suited for convolutional
learning methods. As we have seen in the previous chapters, deep learning methods
are capable of learning sophisticated functions from image data. Much of modern
radiology (the mechanical parts at least) consists of classifying and handling complex
medical image data. The use of scans has a long and storied history in medicine (see
Figure 8-4 for an example of an early X-ray).

In this section, we’ll quickly introduce a number of different types of scans and briefly
cover some deep learning applications. Many of these applications are qualitatively
similar. They start by obtaining a large enough dataset of scans from a medical insti‐
tution. These scans are used to train a convolutional architecture (see Figure 8-3).
Often, the architecture is a standard VGG or ResNet architecture, but sometimes with
some tweaks to the core structure. The trained model often (at least according to per‐
haps naive statistics) has strong performance on the task in question.

136 | Chapter 8: Deep Learning for Medicine

https://www.newyorker.com/magazine/2018/11/12/why-doctors-hate-their-computers
https://www.newyorker.com/magazine/2018/11/12/why-doctors-hate-their-computers

7 “AI, Radiology and the Future of Work.” The Economist. https://econ.st/2HrRDuz. 2018.

Figure 8-3. This diagram draws out some standard convolutional architectures
(VGG-19, Resnet-34, the number indicates the number of convolutions applied). These
architectures are standard for image tasks and are commonly used for medical applica‐
tions.

These advances have led to some perhaps inflated expectations. Some high-profile AI
scientists—most notably, Geoff Hinton—have commented that deep learning for
radiology will advance so far that it will no longer be worth training new radiologists
in the near future.7 Is this actually right? There have been a string of recent advances
in which deep learning systems have achieved what appears like near-human perfor‐

Deep Radiology | 137

https://econ.st/2HrRDuz

mance. However, these results come with many caveats, and these systems are often
brittle in unknown fashions.

Our opinion is that the risk of direct 1-1 replacement of doctors remains low, but
there is a real risk of systematic displacement. What does this mean? New startups are
working to invent new business models in which deep learning systems do the large
majority of scan analysis, with only a few doctors remaining.

Is Deep Learning Actually Learning Medicine?

Significant analysis has gone into scrutinizing what deep models
actually learn in medical imagery. Unfortunately, in many cases, it
looks like the deep models succeed in picking up nonmedical fac‐
tors in the imagery. For example, the model might implicitly learn
to identify the scanning center in which a particular medical scan
was taken. Since particular centers are often used for more serious
or less serious patients, the model might at first glance look as
though it had succeeded in learning useful medicine, but would in
fact be generally useless.
What can be done in such cases? The jury is still out on the ques‐
tion, but a couple of early approaches are emerging. The first is to
use the growing literature on model interpretability to scrutinize
carefully what the model is learning. In Chapter 10, we will delve
into a number of methods for model interpretability.
The other approach is to conduct prospective trials deploying the
models in clinics. Prospective trials remain the gold standard for
testing proposed medical interventions, and it is likely they will
remain so for deep learning techniques as well.

X-Ray Scans and CT Scans
Informally, an X-ray scan—radiography, if we’re being precise—involves using X-rays
to view some internal structure in the body (Figure 8-4). Computed tomography
(CT) scans are a variant of X-ray scans in which the X-ray source and detectors rotate
around the object being imaged, allowing for 3D images.

138 | Chapter 8: Deep Learning for Medicine

Figure 8-4. The first medical X-ray taken by Wilhelm Röntgen of his wife Anna Bertha
Ludwig’s hand. The science of X-rays has come a long way since this first photograph,
and there’s a chance that deep learning will take it much further yet!

A common misconception is that X-ray scans are only capable of imaging “hard”
objects such as bones. This turns out to be quite false. CT scans are routinely used to
image tissues in the body such as the brain (Figure 8-5), and backscatter X-rays are
often used in airports to image travelers at security checkpoints. Mammograms use
low-energy X-rays to scan breast tissue as well.

Deep Radiology | 139

8 Gao, Xiaohong W., Rui Hui, and Zengmin Tian. “Classification of CT Brain Images Based on Deep Learning
Networks.” https://doi.org/10.1016/j.cmpb.2016.10.007. 2017.

9 Pranav Rajpurkar et al. “CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep
Learning.” https://arxiv.org/pdf/1711.05225.pdf. 2017.

10 Ribli, Dezso et al. “Detecting and Classifying Lesions in Mammograms with Deep Learning.” https://doi.org/
10.1038/s41598-018-22437-z. 2018.

Figure 8-5. CT scan of a human brain from bottom to top. Note the capacity of CT scans
to provide 3D information. (Source: Wikimedia.)

It’s worth noting that all X-ray scans are known to be linked to cancer, so a common
goal is to minimize the exposure of patients to radiation by limiting the number of
scans required. This risk is more marked for CT scans, which have to expose the
patient for longer time periods in order to gather sufficient data. A wide variety of
signal processing algorithms have been designed to reduce the number of scans
required for CT. Some exciting recent work has started to use deep learning to further
tune this reconstruction process so even fewer scans are required.

However, most uses of deep learning in the space are used to classify scans. For exam‐
ple, convolutional networks have been used to classify Alzheimer progression from
CT brain images.8 Other work has claimed the ability to diagnose pneumonia from
chest X-ray scans at near physician-level accuracy.9 Deep learning has similarly been
used to achieve strong classification accuracy on mammography.10

140 | Chapter 8: Deep Learning for Medicine

https://doi.org/10.1016/j.cmpb.2016.10.007
https://arxiv.org/pdf/1711.05225.pdf
https://doi.org/10.1038/s41598-018-22437-z
https://doi.org/10.1038/s41598-018-22437-z
https://commons.wikimedia.org/wiki/File:Computed_tomography_of_human_brain_-_large.png

Human-Level Accuracy Is Tricky!

When a paper claims that its system achieves near-human accu‐
racy, it’s worth pausing to consider what that means. Usually, the
authors of the paper choose some metric (say, ROC AUC), and a
group of external physicians works to annotate the chosen test set
for the study. The accuracy of the model on this test set is then
compared against that of the “average” physician (often the mean
or median of the physician scores).
This is a fairly complex process, and there are a number of ways in
which this comparison can go wrong. First, the choice of metric
can play a role—all too commonly, varying the choice of metric can
lead to differences. Good analyses will consider multiple different
metrics to ensure that the conclusions are robust to such variance.
Another point to note is that there’s considerable variation between
doctors themselves. It’s worth checking to make sure that your
choice of “average” is robust. A better metric might be to ask
whether your algorithm is capable of beating the “best” doctor in
the panel.
A third issue is that it can be extremely tricky to make sure that the
test set isn’t “polluted.” (See our warning in Chapter 7.) Subtle
forms of pollution can occur in which the scans from the same
patient accidentally end up in both the training and test sets. If
your model has very high accuracy, it’s worth double- and triple-
checking for such leakages. All of us have been guilty of making
mistakes on these pipelines in the past.
Finally, “human-level accuracy” doesn’t often mean much. As we’ve
noted, some expert systems and Bayesian networks achieved
human-level accuracy on limited tasks but failed to have a broad
impact on medicine. The reason is that doctors perform a whole
range of tasks which are tightly wound together. A given doctor
may underperform a deep network on scan reading, but may be
able to offer a much better diagnosis using other information. It’s
worth remembering that these tasks are often synthetic, and may
not match best physician practices. Prospective clinical trials using
deep learning systems live with consenting patients will be needed
to more accurately gauge the effectiveness of these techniques.

Histology
Histology is the study of tissues, often viewed through microscopic scans. We won’t
say too much about it, because the issues that confront designers of deep histology
systems are a subset of the issues that deep microscopy faces. Take a look back at that
chapter to learn more. We’ll note simply that deep learning models have achieved
strong performance on histology studies.

Deep Radiology | 141

MRI Scans
Magnetic resonance imaging (MRI) is another form of scan commonly used by doc‐
tors. Instead of X-rays, it uses strong magnetic fields to do its imaging. One advan‐
tage of MRI scans is therefore limited radiation exposure. However, these scans often
require patients to lie within a noisy and cramped MRI machine, an experience which
may be considerably more unpleasant for patients than X-ray scans.

Like CT, MRI is capable of assembling 3D images. And as with CT scans, a number of
deep learning studies have sought to ease this reconstruction process. Some early
studies claim that deep learning techniques can improve on traditional signal pro‐
cessing methods to reconstruct MRI images with reduced scan times. In addition, as
with other scanning techniques, a number of studies have sought to use deep net‐
works for classifying, segmenting, and processing MRI images with some strong suc‐
cesses.

Deep Learning for Signal Processing?

For both CT scans and MRI scans, we’ve mentioned in passing that
deep networks have been used to help reconstruct images more
effectively. Both of these applications are examples of the broader
trend of using deep learning in signal processing. We’ve already
seen some of this in passing; deep learning methods for super-
resolution microscopy also fall within this general framework.
Such work on improving signal processing techniques is very excit‐
ing from a fundamental perspective, since signal processing is a
highly mathematical, developed field. The fact that deep learning
offers new directions here is in itself groundbreaking! However, it’s
also worth noting that traditional signal processing algorithms
often offer very strong baselines. As a result, unlike with image
classification, deep methods don’t yet offer breakthrough accuracy
improvements in this area. However, this is a field of continued and
active research. It won’t at all be surprising if work on deep signal
processing ends up being even more influential than simple image
processing in the long run due to the very wide range of applica‐
tions for such techniques.

It’s worth noting that there are many other types of scans doctors use. Given the
explosion in deep learning applications powered by strong open source tools, it’s a
good bet that for each such scan type, there’s a study or two attempting to use deep
learning for the task. For example, deep learning has been applied to ultrasounds,
electrocardiogram (ECG) scans, skin cancer detection, and more.

Convolutional networks are an extraordinarily powerful tool, because so much
human activity revolves around processing complex visual information. In addition,

142 | Chapter 8: Deep Learning for Medicine

11 See Digital Addict on Wikipedia for more information.

the growth of open source frameworks has meant that researchers worldwide have
joined the race to apply deep learning techniques on new types of images. In many
ways, this type of research is relatively straightforward (on the computational end, at
least), as standard tools can be applied without too much fuss. If you’re reading this
while employed at a company, it’s these same properties of deep learning that likely
make it interesting to you as a practitioner.

Learning Models as Therapeutics
So far in this chapter, we’ve seen that learning models can be effective assistants to
doctors, helping aid the process of diagnosis and scan understanding. However,
there’s some exciting evidence that learning models can move past being assistants to
doctors to being therapeutic instruments in their own right.

How could this possibly work? One of the greatest powers of deep learning is that it is
now feasible for the first time to build practical software that operates on perceptual
data. For this reason, machine learning systems could potentially serve as “eyes” and
“ears” to differently abled patients. A visual system could help patients with visual
impairments more effectively navigate the world. An audio processing system could
help patients with hearing impairments more effectively navigate the world. These
systems face a number of challenges that other deep models don’t, since they have to
operate effectively in real time. All the models we’ve considered so far in this book
have been batch systems, suited for deployment on a backend server, not models fit
for deployment on a live embedded device. There’s a whole host of challenges in deal‐
ing with machine learning in production which we won’t get into here, but we
encourage interested readers to dive into the subject more deeply.

We also note that there’s a separate class of software-driven therapeutics that make
uses of the powerful effects of modern software on the human brain. A groundswell
of recent research has shown that modern software applications such as Facebook,
Google, WeChat, and the like can be highly addictive. These apps are designed with
bright colors and intended to hit many of the same centers in our brains as casino slot
machines. There’s growing recognition that digital addictionis a real problem facing
many patients.11 This is a broad area beyond the scope of this book, but we note that
there’s evidence that this power of modern software can be used for good too. Some
software apps have been developed that use the psychological effects of modern apps
as therapeutic interventions for patients struggling with depression or other condi‐
tions.

Learning Models as Therapeutics | 143

https://en.wikipedia.org/wiki/Digital_addict

Diabetic Retinopathy
So far in this chapter, we have discussed applications of deep learning to medicine in
a theoretical sense. In this section, we’ll roll up our sleeves and get our hands dirty
with a practical example. In particular, we’re going to build a model to help diagnose
diabetic retinopathy patient progression.

Diabetic retinopathy is a condition in which diabetes damages the health of the eyes.
It is a major cause of blindness, especially in the developing world. The fundus is the
interior area of the eye that’s opposite to the lens. A common strategy for diagnosis of
diabetic retinopathy is for doctors to view an image of the patient’s fundus and label it
manually. Significant work has gone into “fundus photography,” which develops tech‐
niques to capture patient fundus images (see Figure 8-6).

Figure 8-6. An image of a patient fundus from a patient who has undergone scatter laser
surgery treatment for diabetic retinopathy. (Source: Wikimedia.)

The learning challenge for diabetic retinopathy is to design an algorithm that can
classify a patient’s disease progress given an image of the patients’ fundus. At present,
making such predictions requires skilled doctors or technicians. The hope is that a
machine learning system could accurately predict disease progression from patient
fundus images. This could provide patients with a cheap method of understanding
their risk, which they could use before consulting a more expensive expert doctor for
a diagnosis.

In addition, unlike EHR data, fundus images don’t contain much sensitive informa‐
tion about patients, which makes it easier to gather large fundus image datasets. For
these reasons, a number of machine learning studies and challenges have been con‐
ducted on diabetic retinopathy datasets. In particular, Kaggle sponsored a contest
aimed at creating good diabetic retinopathy models and put together a dataset of
high-resolution fundus images. In the remainder of this section, you will learn how to
use DeepChem to build a diabetic retinopathy classifier on the Kaggle Diabetic Retin‐
opathy (DR) dataset.

144 | Chapter 8: Deep Learning for Medicine

https://commons.wikimedia.org/wiki/File:Fundus_photo_showing_scatter_laser_surgery_for_diabetic_retinopathy_EDA09.JPG
https://www.kaggle.com/c/diabetic-retinopathy-detection

Obtaining the Kaggle Diabetic Retinopathy Dataset

The terms of the Kaggle challenge prohibit us from mirroring the
data directly on the DeepChem servers. For this reason, you will
need to download the data manually from Kaggle’s site. You will
have to register an account with Kaggle and download the dataset
through their API. The full dataset is quite large (80 GB), so you
might choose to download a subset of the data if your internet con‐
nection can’t handle the full download.
See the GitHub repository associated with this book for more
information on downloading this dataset. The image loading func‐
tions here require that the training data is structured in a particular
directory structure. Details on this directory format are in the Git‐
Hub repo.

The first step to working with this data is to preprocess and load the raw data. In par‐
ticular, we crop each image to focus on its center square containing the retina. We
then resize this center square to be of size 512 by 512.

Dealing with High-Resolution Images

Many image datasets in medicine and science will feature very
high-resolution images. While it may be tempting to train deep
learning models directly on these high-resolution images, this is
usually computationally challenging. One problem is that most
modern GPUs have limited memory. That means training very
high-resolution models may not be feasible on standard hardware.
In addition, most image processing systems (for now) expect their
input images to have a fixed shape. This means that high-resolution
images from different cameras will have to be cropped to fit within
standard shapes.
Luckily, it turns out that cropping and resizing images is usually
not terribly damaging to the performance of machine learning sys‐
tems. It’s also common to do more thorough data augmentation, in
which a number of perturbed images are automatically generated
from each source image. In this particular case study, we per‐
formed a few standard data augmentations. We encourage you to
dig into the augmentation code since it may prove a useful tool for
your own projects.

The core data is stored in a set of directories on disk. We use DeepChem’s
ImageLoader class to load these images from disk. If you’re interested, you can look
through this loading and preprocessing code in detail, but we’ve wrapped it into a
convenience helper function. In the style of the MoleculeNet loaders, this function
also does a random training, validation, and test split:

Diabetic Retinopathy | 145

https://github.com/deepchem/DeepLearningLifeSciences

train, valid, test = load_images_DR(split='random', seed=123)

Now that we have the data for this learning task, let’s build a convolutional architec‐
ture to learn from this dataset. The architecture for this task is fairly standard and
resembles other architectures you’ve already seen in this book, so we don’t replicate it
here. Here’s the invocation of the object wrapper for the underlying convolutional
network:

Define and build model
model = DRModel(
 n_init_kernel=32,
 batch_size=32,
 learning_rate=1e-5,
 augment=True,
 model_dir='./test_model')

This code sample defines a diabetic retinopathy convolutional network in Deep‐
Chem. As we will see later, training this model will take some heavy computation. For
that reason, we recommend that you download our pretrained model from the Deep‐
Chem website and use that for your early exploration. We have already trained this
model on the full Kaggle Diabetic Retinopathy dataset and stored its weights for your
convenience. You can use the following commands to download and store the model
(note that the first command should be entered on a single line, with no space after
the +/+):

wget https://s3-us-west-1.amazonaws.com/deepchem.io/featurized_datasets
 /DR_model.tar.gz
mv DR_model.tar.gz test_model/
cd test_model
tar -zxvf DR_model.tar.gz
cd ..

You can then restore the trained model weights as follows:

model.build()
model.restore(checkpoint="./test_model/model-84384")

We are restoring a particular pretrained “checkpoint” from this model. We provide
more details on the restoration process and the full scripts used to achieve it in the
code repository associated with this book. With the pretrained model in place, we can
compute some basic statistics upon it:

metrics = [
 dc.metrics.Metric(DRAccuracy, mode='classification'),
 dc.metrics.Metric(QuadWeightedKappa, mode='classification')
]

There are a number of metrics that are useful for evaluating diabetic retinopathy
models. Here we use, DRAccuracy, which is simply the model accuracy (percent of
labels which are correct), and Cohen’s Kappa, a statistic used to measure agreement

146 | Chapter 8: Deep Learning for Medicine

between two classifiers. This is useful because the diabetic retinopathy learning task is
a multiclass learning problem.

Let’s evaluate our pretrained model on the test set with our metrics:

model.evaluate(test, metrics)

This produces the following results:

computed_metrics: [0.9339595787076572]
computed_metrics: [0.8494075470551462]

The basic model gets 93.4% accuracy on our test set. Not bad! (It’s important to note
that this isn’t the same as the Kaggle test set—we’ve simply partitioned Kaggle’s train‐
ing set into train/valid/test sets for our experimentation. You’re welcome to try sub‐
mitting your trained model to Kaggle for evaluation on their test set, though.) Now,
what if you’re interested in training the full model from scratch? This will take about
a day or two’s training on a good GPU system, but is straightforward enough to do:

for i in range(10):
 model.fit(train, nb_epoch=10)
 model.evaluate(train, metrics)
 model.evaluate(valid, metrics)
 model.evaluate(valid, cm)
 model.evaluate(test, metrics)
 model.evaluate(test, cm)

We train the model for 100 epochs, pausing periodically to print out results from the
model. If you’re running this job, we recommend making sure that your machine
won’t shut down or go to sleep halfway through the job. There’s nothing as irritating
as losing a large job to a sleep screen!

Conclusion
In many ways, the application of machine learning to medicine has the potential to
have greater impact than many of the other applications we’ve seen so far. These other
applications may have shifted what you do at work, but machine learning healthcare
systems will soon change your personal healthcare experiences, along with the expe‐
riences of millions if not billions of others. For this reason, it’s worth pausing and
thinking through some of the ethical repercussions.

Ethical Considerations
Training data for these systems will likely be biased for the foreseeable future. It’s
likely that the training data will be drawn from the medical systems of developed
economies, and as a result it’s possible that the models constructed will be considera‐
bly less accurate for portions of the world that currently lack robust medical systems.

Conclusion | 147

In addition, gathering data on patients is itself fraught with potential ethical issues.
Medicine has a long and troubled history of experimenting without consent, espe‐
cially with people from marginalized groups. Consider the case of Henrietta Lacks, an
African-American a cancer patient in 1950s Baltimore. A cell line cultivated from a
tissue sample of Ms. Lacks’s tumor (“HeLa”) became a standard biological tool and
was used in thousands of research papers—yet none of the proceeds from this
research ever reached her family. Ms. Lacks’s physician did not inform the family of
the samples he’d taken, or obtain consent. Her family did not learn about the HeLa
cell line till the 1970s, when they were contacted by medical researchers seeking to
draw additional samples.

How could this situation repeat itself in the deep learning era? The medical records of
a patient could possibly be used to train a learning system without the consent of the
patient or their family. Or, perhaps more realistically, the patient or the family could
be induced to sign away the rights to their data at the bedside in the hopes of a last-
minute cure.

There’s something disturbing about these scenarios. None of us would care to learn
that our beloved family members’ rights have been violated by institutional medicine
or profit-seeking startups. How can we seek to prevent these ethical violations from
occurring? If you’re involved in data gathering efforts, pause and ask where the data is
coming from. Were all relevant laws appropriately respected? If you’re a scientist or
developer at a company or research institution, you will have valuable skills that give
you leverage within the organization. If you take a stand, you will influence others in
the organization to stand with you. And if your organization refuses to listen, you
have valuable skills that will enable you to find a job with an organization that holds
itself to high ethical standards.

Job Losses
Most of the fields considered in other chapters in this book are relatively niche scien‐
tific disciplines. Thus, the potential of significant advances in the field causing job
losses doesn’t really exist. Rather, it’s to be expected that job growth in these fields will
occur as these relatively niche areas will suddenly become accessible to a much wider
pool of developers and scientists.

Healthcare and medicine are different. Healthcare is one of the largest industries
worldwide, with millions of doctors, nurses, technicians, and more serving the needs
of the world’s population. What happens as significant fractions of this workforce are
confronted with deep learning tools?

Much of medicine is deeply human. Having a trusted primary care provider who you
can be sure is looking out for your best interests makes a profound difference to an ill
patient. It’s very possible that for many patients, care experience could actually
improve as much of the busywork is automated out.

148 | Chapter 8: Deep Learning for Medicine

http://rebeccaskloot.com/the-immortal-life/

In the US, healthcare reform in 2010 (the Affordable Care Act) accelerated the use of
EHR systems throughout the American medical system. Many doctors have reported
feeling that these EHR systems are deeply unfriendly, requiring many unnecessary
administrative actions. Part of this is due simply to poor software design, worsened
by regulatory capture that makes it difficult for healthcare institutions to shift to bet‐
ter alternatives. But some of it is due to limitations of present-day software. Use of
deep learning systems to allow for more intelligent information handling could lower
the burden on doctors, enabling them to spend more time with patients.

In addition, most countries in the world have healthcare systems that don’t match
those in the United States and Europe. The increasing availability of open source
tools and accessible datasets will provide governments and entrepreneurs in the rest
of the world the tools they need to serve their constituents.

Summary
In this chapter, you’ve learned about the history of applying machine learning meth‐
ods to problems in medicine. We started by giving you an overview of classical meth‐
ods such as expert systems and Bayesian networks, then shifted into more modern
work on electronic health records and medical scans. We ended the chapter with an
in-depth case study on training a classifier that predicts diabetic retinopathy patient
progression. We also commented in a number of asides about the challenges that
learning systems for healthcare face. We’ll return to some of these challenges in
Chapter 10, where we discuss the interpretability of deep learning systems.

Conclusion | 149

CHAPTER 9

Generative Models

All the problems we have looked at so far involve, in some way, translating from
inputs to outputs. You create a model that takes an input and produces an output.
Then you train it on input samples from a dataset, optimizing it to produce the best
output for each one.

Generative models are different. Instead of taking a sample as input, they produce a
sample as output. You might train the model on a library of photographs of cats, and
it would learn to produce new images that look like cats. Or, to give a more relevant
example, you might train it on a library of known drug molecules, and it would learn
to generate new “drug-like” molecules for use as candidates in a virtual screen. For‐
mally speaking, a generative model is trained on a collection of samples that are
drawn from some (possibly unknown, probably very complex) probability distribu‐
tion. Its job is to produce new samples from that same probability distribution.

In this chapter, we will begin by describing the two most popular types of generative
models: variational autoencoders and generative adversarial networks. We will then
discuss a few applications of these models in the life sciences, and work through some
code examples.

Variational Autoencoders
An autoencoder is a model that tries to make its output equal to its input. You train it
on a library of samples and adjust the model parameters so that on every sample the
output is as close as possible to the input.

That sounds trivial. Can’t it just learn to pass the input directly through to the output
unchanged? If that were actually possible it would indeed be trivial, but autoencoders
usually have architectures that make it impossible. Most often this is done by forcing
the data to go through a bottleneck, as shown in Figure 9-1. For example, the input

151

and output might each include 1,000 numbers, but in between would be a hidden
layer containing only 10 numbers. This forces the model to learn how to compress
the input samples. It must represent 1,000 numbers worth of information using only
10 numbers.

Figure 9-1. Structure of a variational autoencoder.

If the model needed to handle arbitrary inputs, that would be impossible. You can’t
throw out 99% of the information and still reconstruct the input! But we don’t care
about arbitrary inputs, only the specific ones in the training set (and others that
resemble them). Of all possible images, far less than 1% look anything like cats. An
autoencoder doesn’t need to work for all possible inputs, only ones that are drawn
from a specific probability distribution. It needs to learn the “structure” of that distri‐
bution, figure out how to represent the distribution using much less information, and
then be able to reconstruct the samples based on the compressed information.

Now let’s take the model apart. The middle layer, the one that serves as the bottleneck,
is called the latent space of the autoencoder. It is the space of compressed representa‐
tions of samples. The first half of the autoencoder is called the encoder. Its job is to
take samples and convert them to compressed representations. The second half is
called the decoder. It takes compressed representations in the latent space and con‐
verts them back into the original samples.

This gives us our first clue about how autoencoders could be used for generative
modeling. The decoder takes vectors in the latent space and converts them into sam‐
ples, so we could take random vectors in the latent space (picking a random value for
each component of the vector) and pass them through the decoder. If everything goes
well, the decoder should produce a completely new sample that still resembles the
ones it was trained on.

152 | Chapter 9: Generative Models

This sort of works, but not very well. The problem is that the encoder may only pro‐
duce vectors in a small region of the latent space. If we pick a vector anywhere else in
the latent space, we may get an output that looks nothing like the training samples. In
other words, the decoder has only learned to work for the particular latent vectors
produced by the encoder, not for arbitrary ones.

A variational autoencoder (VAE) adds two features to overcome this problem. First, it
adds a term to the loss function that forces the latent vectors to follow a specified dis‐
tribution. Most often they are constrained to have a Gaussian distribution with a
mean of 0 and a variance of 1. We don’t leave the encoder free to generate vectors
wherever it wants. We force it to generate vectors with a known distribution. That
way, if we pick random vectors from that same distribution, we can expect the
decoder to work well on them.

Second, during training we add random noise to the latent vector. The encoder con‐
verts the input sample to a latent vector, and then we randomly change it a little bit
before passing it through the decoder, requiring the output to still be as close as pos‐
sible to the original sample. This prevents the decoder from being too sensitive to the
precise details of the latent vector. If we only change it by a little bit, the output
should only change by a little bit.

These changes do a good job of improving the results. VAEs are a popular tool for
generative modeling: they produce excellent results on many problems.

Generative Adversarial Networks
A generative adversarial network (GAN) has much in common with a VAE. It uses
the same exact decoder network to convert latent vectors into samples (except in a
GAN, it is called the generator instead of the decoder). But it trains that network in a
different way. It works by passing random vectors into the generator and directly
evaluating the outputs on how well they follow the expected distribution. Effectively,
you create a loss function to measure how well the generated samples match the
training samples, then use that loss function to optimize the model.

That sounds simple for a few seconds, until you think about it and realize it isn’t sim‐
ple at all. Could you write a loss function to measure how well an image resembles a
cat? No, of course not! You wouldn’t know where to begin. So, instead of asking you
to come up with that loss function yourself, a GAN learns the loss function from the
data.

As shown in Figure 9-2, a GAN consists of two parts. The generator takes random
vectors and generates synthetic samples. The second part, called the discriminator,
tries to distinguish the generated samples from real training samples. It takes a sam‐
ple as input and outputs a probability that this is a real training sample. It acts as a
loss function for the generator.

Generative Adversarial Networks | 153

Figure 9-2. Structure of a generative adversarial network.

Both parts are trained simultaneously. Random vectors are fed into the generator, and
the output is fed into the discriminator. The parameters of the generator are adjusted
to make the discriminator’s output as close as possible to 1, while the parameters of
the discriminator are adjusted to make its output as close as possible to 0. In addition,
real samples from the training set are fed into the discriminator, and its parameters
are adjusted to make the output close to 1.

This is the “adversarial” aspect. You can think of it as a competition between the gen‐
erator and discriminator. The discriminator is constantly trying to get better at distin‐
guishing real samples from fake ones. The generator is constantly trying to get better
at fooling the discriminator.

Like VAEs, GANs are a popular type of generative model that produces good results
on many problems. The two types of models have distinct strengths and weaknesses.
Very roughly speaking, one might say that GANs tend to produce higher-quality sam‐
ples, while VAEs tend to produce higher-quality distributions. That is, individual
samples generated by a GAN will more closely resemble training samples, while the
range of samples generated by a VAE will more closely match the range of training
samples. Don’t take that statement too literally, though. It all depends on the particu‐
lar problem and the details of the model. Also, countless variations on both
approaches have been proposed. There even are models that combine a VAE with a
GAN to try to get the best features of both. This is still a very active field of research,
and new ideas are published frequently.

Applications of Generative Models in the Life Sciences
Now that we’ve introduced you to the basics of deep generative models, let’s start talk‐
ing about applications. Broadly speaking, generative models bring a few superpowers
to the table. First, they allow for a semblance of “creativity.” New samples can be gen‐
erated according to the learned distribution. This allows for a powerful complement

154 | Chapter 9: Generative Models

to a creative process that can tie into existing efforts in drug or protein design. Sec‐
ond, being able to model complex systems accurately with generative models could
allow scientists to build an understanding of complex biological processes. We’ll dis‐
cuss these ideas in more depth in this section.

Generating New Ideas for Lead Compounds
A major part of a modern drug discovery effort is coming up with new compounds.
This is mostly done semiannually, with expert human chemists suggesting modifica‐
tions to core structures. Often, this will involve projecting a picture of the current
molecular series on a screen and having a room full of senior chemists suggest modi‐
fications to the core structure of the molecule. Some subset of these suggested mole‐
cules are actually synthesized and tested, and the process repeats until a suitable
molecule is found or the program is dropped. This process has powerful advantages
since it can draw upon the deep intuition of expert chemists who may be able to iden‐
tify flaws with a potential structure (perhaps it resembles a compound they’ve seen
before which caused unexplained liver failure in rats) that may not be easy to identify
algorithmically.

At the same time, though, this process is very human-limited. There aren’t that many
talented and experienced senior chemists in the world, so the process can’t scale out‐
ward. In addition, it makes it very challenging for a pharmaceutical division in a
country that has historically lacked drug discovery expertise to bootstrap itself. A
generative model of molecular structures could serve to overcome these limitations.
If the model were trained on a suitable molecular representation, it might be able to
rapidly suggest new alternative compounds. Access to such a model could help
improve current processes by suggesting new chemical directions that may have been
missed by human designers. It’s worth noting that such design algorithms have seri‐
ous caveats, though, as we will see a little later in this chapter.

Protein Design
Design of new enzymes and proteins is a major business these days. Engineered
enzymes are used widely in modern manufacturing. (There’s a good chance your
laundry detergent holds some enzymes!) However, in general, design of new enzymes
has proven challenging. Some early work has shown that deep models can have some
success at predicting protein function from sequence. It’s not unreasonable at all to
envision using deep generative models to suggest new protein sequences that might
have desired properties.

The introduction of generative models for this purpose could be even more impactful
than for small molecule design. Unlike with small molecules, it can be very tricky for
human experts to predict the downstream effects of mutations to a given protein.

Applications of Generative Models in the Life Sciences | 155

Using generative models can allow for richer protein design, enabling directions
beyond the capability of human experts today.

A Tool for Scientific Discovery
Generative models can be a powerful tool for scientific discovery. For example, hav‐
ing an accurate generative model of a tissue development process could be extremely
valuable to developmental biologists or as a tool in basic science. It might be possible
to create “synthetic assays” where we can study tissue development in many combina‐
tions of environmental conditions by using the generative model to run rapid simula‐
tions. This future is still a ways off, since we’d need generative models that work
effectively as initial conditions change. This will take some more research beyond the
current state of the art. Nevertheless, the vision is exciting because generative model‐
ing could allow for biologists to build effective models of extremely complex develop‐
mental and physiological processes and test their hypotheses of how these systems
evolve.

The Future of Generative Modeling
Generative models are challenging! The first GANs were only capable of generating
blurry images that were barely recognizable as faces. The latest GANs (at the time of
writing) are capable of generating images of faces that are more or less indistinguish‐
able from true photographs. It is likely that in the next decade, these models will be
further refined to allow for generative videos. These developments will have pro‐
found repercussions on modern societies. For much of the last century, photographs
have been routinely used as “proof ” of crimes, quality, and more. As generative tools
develop, this standard of proof will fall short, as arbitrary images will be able to be
“photoshopped.” This development will pose a major challenge for criminal justice
and even international relations.

At the same time, it’s likely that the advent of high-fidelity generative video will trig‐
ger a revolution in modern science. Imagine high-quality generative models of
embryonic development! It might be feasible to model the effects of CRISPR genetic
modifications or understand developmental processes in greater detail than has ever
been possible. Improvements in generative models will have effects in other fields of
science too. It’s likely that generative modeling will become a powerful tool in physics
and climate science, allowing for more powerful simulations of complex systems.
However, it’s worth emphasizing that these improvements today remain in the future;
much basic science has to be done to mature these models to useful stability.

156 | Chapter 9: Generative Models

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119234/

Working with Generative Models
Now let’s work through a code example. We will train a VAE to generate new mole‐
cules. More specifically, it will output SMILES strings. This choice of representation
has distinct advantages and disadvantages compared to some of the other representa‐
tions we have discussed. On the one hand, SMILES strings are very simple to work
with. Each one is just a sequence of characters drawn from a fixed alphabet. That
allows us to use a very simple model to process them. On the other hand, SMILES
strings are required to obey a complex grammar. If the model does not learn all the
subtleties of the grammar, then most of the strings it produces will be invalid and not
correspond to any molecule.

The first thing we need is a collection of SMILES strings on which to train the model.
Fortunately, MoleculeNet provides us with lots to choose from. For this example, we
will use the MUV dataset. The training set includes 74,469 molecules of varying sizes
and structures. Let’s begin by loading it:

import deepchem as dc
tasks, datasets, transformers = dc.molnet.load_muv()
train_dataset, valid_dataset, test_dataset = datasets
train_smiles = train_dataset.ids

Next, we need to define the vocabulary our model will work with. What is the list of
characters (or “tokens”) that can appear in a string? How long are strings allowed to
be? We can determine these from the training data by creating a sorted list of every
character that appears in any training molecule:

tokens = set()
for s in train_smiles:
 tokens = tokens.union(set(s))
tokens = sorted(list(tokens))
max_length = max(len(s) for s in train_smiles)

Now we need to create a model. What sort of architecture should we use for the
encoder and decoder? This is an ongoing field of research. Various papers have been
published suggesting different models. For this example, we will use DeepChem’s
AspuruGuzikAutoEncoder class, which implements a particular published model. It
uses a convolutional network for the encoder and a recurrent network for the
decoder. You can consult the original paper if you are interested in the details, but
they are not necessary to follow the example. Also notice that we use Exponen
tialDecay for the learning rate. The rate is initially set to 0.001, then decreased by a
little bit (multiplied by 0.95) after every epoch. This helps optimization to proceed
more smoothly in many problems:

from deepchem.models.tensorgraph.optimizers import Adam, ExponentialDecay
from deepchem.models.tensorgraph.models.seqtoseq import AspuruGuzikAutoEncoder
model = AspuruGuzikAutoEncoder(tokens, max_length, model_dir='vae')

Working with Generative Models | 157

https://arxiv.org/abs/1610.02415

batches_per_epoch = len(train_smiles)/model.batch_size
learning_rate = ExponentialDecay(0.001, 0.95, batches_per_epoch)
model.set_optimizer(Adam(learning_rate=learning_rate))

We are now ready to train the model. Instead of using the standard fit() method
that takes a Dataset, AspuruGuzikAutoEncoder provides its own fit_sequences()
method. It takes a Python generator object that produces sequences of tokens
(SMILES strings in our case). Let’s train for 50 epochs:

def generate_sequences(epochs):
 for i in range(epochs):
 for s in train_smiles:
 yield (s, s)

model.fit_sequences(generate_sequences(50))

If everything has gone well, the model should now be able to generate entirely new
molecules. We just need to pick random latent vectors and pass them through the
decoder. Let’s create a batch of one thousand vectors, each of length 196 (the size of
the model’s latent space).

As noted previously, not all outputs will actually be valid SMILES strings. In fact, only
a small fraction of them are. Fortunately, we can easily use RDKit to check them and
filter out the invalid ones:

import numpy as np
from rdkit import Chem
predictions = model.predict_from_embeddings(np.random.normal(size=(1000,196)))
molecules = []
for p in predictions:
 smiles = ''.join(p)
 if Chem.MolFromSmiles(smiles) is not None:
 molecules.append(smiles)
for m in molecules:
 print(m)

Analyzing the Generative Model’s Output
In addition to the problem of invalid outputs, many of the molecules corresponding
to the SMILES strings that are output may not be characteristic of drug molecules. So,
we need to develop strategies that will enable us to quickly identify molecules that are
not drug-like. These strategies can best be explained through a practical example.
Let’s assume that this is the list of SMILES strings that came from our generative
model:

smiles_list = ['CCCCCCNNNCCOCC',
'O=C(O)C(=O)ON/C=N/CO',
'C/C=N/COCCNSCNCCNN',
'CCCNC(C(=O)O)c1cc(OC(OC)[SH](=O)=O)ccc1N',
'CC1=C2C=CCC(=CC(Br)=CC=C1)C2',

158 | Chapter 9: Generative Models

'CCN=NNNC(C)OOCOOOOOCOOO',
'N#CNCCCCCOCCOC1COCNN1CCCCCCCCCCCCCCCCCCCOOOOOSNNCCCCCSCSCCCCCCCCCOCOOOSS',
'CCCC(=O)NC1=C(N)C=COO1',
'CCCSc1cc2nc(C)cnn2c1NC',
'CONCN1N=NN=CC=C1CC1SSS1',
'CCCOc1ccccc1OSNNOCCNCSNCCN',
'C[SH]1CCCN2CCN2C=C1N',
'CC1=C(C#N)N1NCCC1=COOO1',
'CN(NCNNNN)C(=O)CCSCc1ccco1',
'CCCN1CCC1CC=CC1=CC=S1CC=O',
'C/N=C/c1ccccc1',
'Nc1cccooo1',
'CCOc1ccccc1CCCNC(C)c1nccs1',
'CNNNNNNc1nocc1CCNNC(C)C',
'COC1=C(CON)C=C2C1=C(C)c1ccccc12',
'CCOCCCCNN(C)C',
'CCCN1C(=O)CNC1C',
'CCN',
'NCCNCc1cccc2c1C=CC=CC=C2',
'CCCCCN(NNNCNCCCCCCCCCCSCCCCCCCCCCCCCCNCCNCCCCSSCSSSSSSCCCCCCCCCCCCCSCCCCCSC)\
C(O)OCCN',
'CCCS1=CC=C(C)N(CN)C2NCC2=C1',
'CCNCCCCCCOc1cccc(F)c1',
'NN1O[SH](CCCCO)C12C=C2',
'Cc1cc2cccc3c(CO)cc-3ccc-2c1']

The first step in our analysis will be to examine the molecules and determine whether
there are any that we want to discard. We can use some of the facilities in RDKit,
which is included as part of DeepChem, to examine the molecules represented by
these strings. In order to evaluate the strings, we must first convert them to molecule
objects. We can do this using the following list comprehension:

molecules = [Chem.MolFromSmiles(x) for x in smiles_list]

One factor we may want to examine is the size of the molecules. Molecules with fewer
than 10 atoms are unlikely to generate sufficient interaction energy to produce a
measurable signal in a biological assay. Conversely, molecules with more than 50
atoms may not be capable of dissolving in water and may create other problems in
biological assays. We can get a rough estimate of the sizes of the molecules by calcu‐
lating the number of non-hydrogen atoms in each molecule. The following code cre‐
ates a list of the number of atoms in each molecule. For convenience, we sort the
array so that we can more easily understand the distribution (if we had a larger list of
molecules we would probably want to generate a histogram for this distribution):

print(sorted([x.GetNumAtoms() for x in molecules]))

The results are as follows:

[3, 8, 9, 10, 11, 11, 12, 12, 13, 14, 14, 14, 15,
16, 16, 16, 17, 17, 17, 17, 18, 19, 19, 20, 20, 22, 24, 69, 80]

Working with Generative Models | 159

1 Bickerton, Richard G. et al. “Quantifying the Chemical Beauty of Drugs.” http://dx.doi.org/10.1038/nchem.
1243. 2012.

We can see that there are four very small molecules as well as two large molecules. We
can use another list comprehension to remove molecules with 10 or fewer than 50
atoms:

good_mol_list = [x for x in molecules if x.GetNumAtoms() > 10
 and x.GetNumAtoms() < 50]
print(len(good_mol_list))
23

This list comprehension reduces our previous list of 29 molecules to 23.

In practice, we can use a number of other calculated properties to evaluate the quality
of the generated molecules. Several recent generative model publications use calcula‐
ted molecular properties to determine which of the generated molecules to retain or
discard. One of the more common methods for determining whether molecules are
similar to known drugs, or “drug-like,” is known as the quantitative estimate of drug-
likeness (QED). The QED metric, which was originally published by Bickerton and
coworkers,1 scores molecules by comparing a set of properties calculated for each
molecule with distributions of the same properties in marketed drugs. This score
ranges between 0 and 1, with values closer to 1 being considered more drug-like.

We can use RDKit to calculate QED values for our remaining molecules and retain
only those molecules with QED > 0.5 as follows:

qed_list = [QED.qed(x) for x in good_mol_list]
final_mol_list = [(a,b) for a,b in
 zip(good_mol_list,qed_list) if b > 0.5]

As our final step, we can visualize the chemical structures of final_mol_list and the
corresponding QED scores:

MolsToGridImage([x[0] for x in final_mol_list],
molsPerRow=3,useSVG=True,
subImgSize=(250, 250),
legends=[f"{x[1]:.2f}" for x in final_mol_list])

The results are shown in Figure 9-3.

160 | Chapter 9: Generative Models

http://dx.doi.org/10.1038/nchem.1243
http://dx.doi.org/10.1038/nchem.1243

Figure 9-3. Chemical structures of the generated molecules along with their QED scores.

While these structures are valid and have reasonably high QED scores, they still con‐
tain functionality that may be chemically unstable. Strategies for identifying and
removing problematic molecules like these are discussed in the next section.

Conclusion
While generative models provide an interesting means of producing ideas for new
molecules, some key issues still need to be resolved to ensure their general applicabil‐
ity. The first is ensuring that the generated molecules will be chemically stable and
that they can be physically synthesized. One current method to assess the quality of
molecules produced by a generative model is to observe the fraction of the generated
molecules that obey standard rules of chemical valence—in other words, ensuring
that each carbon atom has four bonds, each oxygen atom has two bonds, each

Conclusion | 161

fluorine atom has one bond, and so on. These factors become especially important
when decoding from a latent space with a SMILES representation. While a generative
model may have learned the grammar of SMILES, there may be nuances that are still
missing.

The fact that a molecule obeys standard rules of valence does not necessarily ensure
that it will be chemically stable. In some cases, a generative model may produce mole‐
cules containing functional groups that are known to readily decompose. As an
example, consider the molecule in Figure 9-4. The functional group highlighted in
the circle, known as a hemiacetal, is known to readily decompose.

Figure 9-4. A molecule containing an unstable group.

In practice, the probability of this molecule existing and being chemically stable is
very small. There are dozens of chemical functionalities like this which are known to
be unstable or reactive. When synthesizing molecules in a drug discovery project,
medicinal chemists know to avoid introducing these functional groups. One way of
imparting this sort of “knowledge” to a generative model is to provide a set of filters
that can be used to postprocess the model output and remove molecules that may be
problematic. In Chapter 11, we will provide a further discussion of some of these fil‐
ters and how they are used in virtual screening. Many of the same techniques used to
identify potentially problematic screening compounds can also be used to evaluate
virtual molecules that are created by a generative model.

In order to test the biological activity of a molecule produced by a generative model,
that molecule must first be synthesized by a chemist. The science of organic chemical
synthesis has a rich history going back more than one hundred years. In this time,
chemists have developed thousands of chemical reactions to synthesize drugs and
drug-like molecules. The synthesis of a drug-like molecule typically requires some‐
where between 5 and 10 chemical reactions, often referred to as “steps.” While some
drug-like molecules can be readily synthesized, the synthetic route to more complex
drug molecules may require more than 20 steps. Despite more than 50 years of work
on automating the planning of organic syntheses, much of the process is still driven
by human intuition followed by trial and error.

Fortunately, recent developments in deep learning are providing new ways of plan‐
ning the synthesis of drug-like molecules. A number of groups have published meth‐
ods that use deep learning to propose routes that can be used to synthesize molecules.

162 | Chapter 9: Generative Models

As input, the model is given a molecule, often referred to as a product, and the set of
steps that were used to synthesize that molecule. By training with thousands of prod‐
uct molecules and the steps used for synthesis, a deep neural network is able to learn
the relationship between product molecules and reaction steps. When presented with
a new molecule, the model suggests a set of reactions that could be used to synthesize
the molecule. In one test, the synthetic routes produced by these models were presen‐
ted to human chemists for evaluation. These evaluators felt that the routes generated
by the models were comparable in quality to routes generated by human chemists.

The application of deep learning to organic synthesis is a relatively new field. It is
hoped that the field will continue to evolve and that these models become an impor‐
tant tool for organic chemists. One can imagine a day in the not too distant future
where these synthesis planning capabilities could be paired with robotic automation
to create a fully automated platform. However, there are difficulties to overcome.

One potential roadblock in the broad adoption of deep learning in organic synthesis
is data availability. The majority of the information used to train these models is in
databases which are the property of a small number of organizations. If these organi‐
zations decide to only utilize this data for their internal efforts, the field will be left
with very few alternatives.

Another factor that may limit the advance of generative models is the quality of the
predictive models that are used to drive molecule generation. Regardless of the archi‐
tecture used to develop a generative model, some function must be used to evaluate
the generated molecules and to direct the search for new molecules. In some cases, we
may be able to develop reliable predictive models. In other cases, the models may be
less reliable. While we can test our models on external validation sets, it is often diffi‐
cult to determine the scope of a predictive model. This scope, also known as the
“domain of applicability,” is the degree to which one can extrapolate outside the mole‐
cules on which a model was trained. This applicability domain is not well defined, so
it may be difficult to determine how well a model will work on novel molecules pro‐
duced by a generative model.

Generative models are a relatively new technique, and it will be interesting to see how
this field evolves in the coming years. As our ability to use deep learning to predict
routes for organic synthesis and build predictive models improves, the power of gen‐
erative models will continue to grow.

Conclusion | 163

CHAPTER 10

Interpretation of Deep Models

At this point we have seen lots of examples of training deep models to solve prob‐
lems. In each case we collect some data, build a model, and train it until it produces
the correct outputs on our training and test data. Then we pat ourselves on the back,
declare the problem to be solved, and go on to the next problem. After all, we have a
model that produces correct predictions for input data. What more could we possibly
want?

But often that is only the beginning! Once you finish training the model there are lots
of important questions you might ask. How does the model work? What aspects of an
input sample led to a particular prediction? Can you trust the model’s predictions?
How accurate are they? Are there situations where it is likely to fail? What exactly has
it “learned”? And can it lead to new insights about the data it was trained on?

All of these questions fall under the topic of interpretability. It covers everything you
might want from a model beyond mechanically using it to make predictions. It is a
very broad subject, and the techniques it encompasses are as diverse as the questions
they try to answer. We cannot hope to cover all of them in just one chapter, but we
will try to at least get a taste of some of the more important approaches.

To do this, we will revisit examples from earlier chapters. When we saw them before,
we just trained models to make predictions, verified their accuracy, and then consid‐
ered our work complete. Now we will take a deeper look and see what else we can
learn.

Explaining Predictions
Suppose you have trained a model to recognize photographs of different kinds of
vehicles. You run it on your test set and find it accurately distinguishes between cars,

165

1 Simonyan, K., A. Vedaldi, and A. Zisserman. “Deep Inside Convolutional Networks: Visualising Image Classi‐
fication Models and Saliency Maps.” Arxiv.org. 2014.

boats, trains, and airplanes. Does that make it ready to put into production? Can you
trust it to keep producing accurate results in the future?

Maybe, but if wrong results lead to serious consequences you might find yourself
wishing for some further validation. It would help if you knew why the model pro‐
duced its particular predictions. Does it really look at the vehicle, or is it actually rely‐
ing on unrelated aspects of the image? Photos of cars usually also include roads.
Airplanes tend to be silhouetted against the sky. Pictures of trains usually include
tracks, and ones of boats include lots of water. If the model is really identifying the
background rather than the vehicle, it may do well on the test set but fail badly in
unexpected cases. A boat silhouetted against the sky might be classified as an air‐
plane, and a car driving past water might be identified as a boat.

Another possible problem is that the model is fixating on overly specific details. Per‐
haps it does not really identify pictures of cars, just pictures that include license plates.
Or perhaps it is very good at identifying life preservers, and has learned to associate
them with pictures of boats. This will usually work, but will fail when shown a car
driving past a swimming pool with a life preserver visible in the background.

Being able to explain why the model made a prediction is an important part of inter‐
pretability. When the model identifies a photograph of a car, you want to know that it
made the identification based on the actual car, not based on the road, and not based
on only one small part of the car. In short, you want to know that it gave the right
answer for the right reasons. That gives you confidence that it will also work on future
inputs.

As a concrete example, let’s return to the diabetic retinopathy model from Chapter 8.
Recall that this model takes an image of a retina as input, and predicts the presence
and severity of diabetic retinopathy in the patient. Between the input and output are
dozens of Layer objects and more than eight million trained parameters. We want to
understand why a particular input led to a particular output, but we cannot hope to
learn that just by looking at the model. Its complexity is far beyond human compre‐
hension.

Many techniques have been developed for trying to answer this question. We will
apply one of the simplest ones, called saliency mapping.1 The essence of this technique
is to ask which pixels of the input image are most important (or “salient”) for deter‐
mining the output. In some sense, of course, every pixel is important. The output is a
hugely complex nonlinear function of all the inputs. In the right image, any pixel
might contain signs of disease. But in a particular image only a fraction of them do,
and we want to know which ones they are.

166 | Chapter 10: Interpretation of Deep Models

https://arxiv.org/abs/1312.6034

Saliency mapping uses a simple approximation to answer this question: just take the
derivative of the outputs with respect to all the inputs. If a region of the image con‐
tains no sign of disease, small changes to any individual pixel in that region should
have little effect on the output. The derivative should therefore be small. A positive
diagnosis involves correlations between many pixels. When those correlations are
absent, they cannot be created just by changing one pixel. But when they are present,
a change to any one of the participating pixels can potentially strengthen or weaken
the result. The derivative should be largest in the “important” regions the model is
paying attention to.

Let’s look at the code. First we need to build the model and reload the trained param‐
eter values:

import deepchem as dc
import numpy as np
from model import DRModel
from data import load_images_DR

train, valid, test = load_images_DR(split='random', seed=123)
model = DRModel(n_init_kernel=32, augment=False, model_dir='test_model')
model.restore()

Now we can use the model to make predictions about samples. For example, let’s
check the predictions for the first 10 test samples:

X = test.X
y = test.y
for i in range(10):
 prediction = np.argmax(model.predict_on_batch([X[i]]))
 print('True class: %d, Predicted class: %d' % (y[i], prediction))

Here is the output:

True class: 0, Predicted class: 0
True class: 2, Predicted class: 2
True class: 0, Predicted class: 0
True class: 0, Predicted class: 0
True class: 3, Predicted class: 0
True class: 2, Predicted class: 2
True class: 0, Predicted class: 0
True class: 0, Predicted class: 0
True class: 0, Predicted class: 0
True class: 2, Predicted class: 2

It gets 9 of the first 10 samples right, which is not bad. But what is it looking at when
it makes its predictions? Saliency mapping can give us an answer. DeepChem makes
this easy:

saliency = model.compute_saliency(X[0])

Explaining Predictions | 167

compute_saliency() takes the input array for a particular sample and returns the
derivative of every output with respect to every input. We can get a better sense of
what this means by looking at the shape of the result:

print(saliency.shape)

This reports it is an array of shape (5, 512, 512, 3). X[0] is the 0th input image,
which is an array of shape (512, 512, 3), the last dimension being the three color
components. In addition, the model has five outputs, the probabilities of the sample
belonging to each of the five classes. saliency contains the derivative of each of the
five outputs with respect to each of the 512×512×3 inputs.

This needs a little processing to be made more useful. First, we want to take the abso‐
lute value of every element. We don’t care whether a pixel should be made darker or
lighter to increase the output, just that it has an effect. Then we want to condense it
down to just one number per pixel. That could be done in various ways, but for now
we will simply sum over the first and last dimensions. If any color component affects
any of the output predictions, that makes the pixel important. Finally, we will normal‐
ize the values to be between 0 and 1:

sal_map = np.sum(np.abs(saliency), axis=(0,3))
sal_map -= np.min(sal_map)
sal_map /= np.max(sal_map)

Let’s see what it looks like. Figure 10-1 shows a sample that the model correctly iden‐
tifies as having severe diabetic retinopathy. The input image is on the left, and the
right side highlights the most salient regions in white.

Figure 10-1. Saliency map for an image with severe diabetic retinopathy.

168 | Chapter 10: Interpretation of Deep Models

The first thing we notice is that the saliency is widely spread over the whole retina,
not just in a few spots. It is not uniform, however. Saliency is concentrated along the
blood vessels, and especially at points where blood vessels branch. Indeed, some of
the indications a doctor looks for to diagnose diabetic retinopathy include abnormal
blood vessels, bleeding, and the growth of new blood vessels. The model appears to be
focusing its attention on the correct parts of the image, the same ones a doctor would
look at most closely.

Optimizing Inputs
Saliency mapping and similar techniques tell you what information the model was
focusing on when it made a prediction. But how exactly did it interpret that informa‐
tion? The diabetic retinopathy model focuses on blood vessels, but what does it look
for to distinguish healthy from diseased blood vessels? Similarly, when a model iden‐
tifies a photograph of a boat, it’s good to know it made the identification based on the
pixels that make up the boat, not the ones that make up the background. But what
about those pixels led it to conclude it was seeing a boat? Was it based on color? On
shape? Combinations of small details? Could there be unrelated pictures the model
would equally confidently (but incorrectly) identify as a boat? What exactly does the
model “think” a boat looks like?

A common approach to answering these questions is to search for inputs that maxi‐
mize the prediction probability. Out of all possible inputs you could put into the
model, which ones lead to the strongest predictions? By examining those inputs, you
can see what the model is really “looking for.” Sometimes it turns out to be very dif‐
ferent from what you expect! Figure 10-2 shows images that have been optimized to
produce strong predictions when fed into a high-quality image recognition model.
The model identifies each image as the listed category with very high confidence, yet
to a human they have almost no resemblance!

Optimizing Inputs | 169

Figure 10-2. Images that fool a high-quality image recognition model. (Source:
Arxiv.org.)

As an example, consider the transcription factor binding model from Chapter 6.
Recall that this model takes a DNA sequence as input, and predicts whether the
sequence contains a binding site for the transcription factor JUND. What does it
think a binding site looks like? We want to consider all possible DNA sequences and
find the ones for which the model most confidently predicts that a binding site is
present.

Unfortunately, we can’t really consider all possible inputs. There are 4101 possible
DNA sequences of length 101. If you needed only one nanosecond to examine each
one, it would take many times longer than the age of the universe to get through all of
them. Instead, we need a strategy to sample a smaller number of inputs.

One possibility is just to look at the sequences in the training set. In this case, that is
actually a reasonable strategy. The training set covers tens of millions of bases from a
real chromosome, so it likely is a good representation of the inputs that will be used
with this model in practice. Figure 10-3 shows the 10 sequences from the training set
for which the model produces the highest output. Each of them is predicted to have a
binding site with greater than 97% probability. Nine of them do in fact have binding
sites, while one is a false positive. For each one, we have used saliency mapping to
identify what the model is focusing on and colored the bases by their saliency.

170 | Chapter 10: Interpretation of Deep Models

https://arxiv.org/abs/1412.1897

Figure 10-3. The 10 training examples with the highest predicted outputs. Checkmarks
indicate the samples that contain actual binding sites.

Looking at these inputs, we can immediately see the core pattern it is recognizing:
TGA ... TCA, where ... consists of one or two bases that are usually C or G. The sali‐
ency indicates it also pays some attention to another one or two bases on either side.
The previous base can be an A, C, or G, and the following base is always either a C or
T. This agrees with the known binding motif for JUND, which is shown in
Figure 10-4 as a position weight matrix.

Figure 10-4. The known binding motif for JUND, represented as a position weight
matrix. The height of each letter indicates the probability of that base appearing at the
corresponding position.

The one sequence that was incorrectly predicted to have a binding site does not con‐
tain this pattern. Instead, it has several repetitions of the pattern TGAC, all close
together. This looks like the beginning of a true binding motif, but it is never followed
by TCA. Apparently our model has learned to identify the true binding motif, but it
also can be misled when several incomplete versions occur in close proximity.

The training samples will not always be a good representation of the full range of pos‐
sible inputs. If your training set consists entirely of photographs of vehicles, it tells
you nothing about how the model responds to other inputs. Perhaps if shown a pho‐
tograph of a snowflake, it would confidently label it as a boat. Perhaps there even are
inputs that look nothing like photographs—maybe just simple geometric patterns or
even random noise—that the model would identify as boats. To test for this possibil‐
ity, we can’t rely on the inputs we already have. Instead, we need to let the model tell
us what it is looking for. We start with a completely random input, then use an opti‐
mization algorithm to modify it in ways that increase the model’s output.

Let’s try doing this for the TF binding model. We begin by generating a completely
random sequence and computing the model’s prediction for it:

Optimizing Inputs | 171

best_sequence = np.random.randint(4, size=101)
best_score =
 float(model.predict_on_batch([dc.metrics.to_one_hot(best_sequence, 4)]))

Now to optimize it. We randomly select a position within the sequence and a new
base to set it to. If this change causes the output to increase, we keep it. Otherwise, we
discard the change and try something else:

for step in range(1000):
 index = np.random.randint(101)
 base = np.random.randint(4)
 if best_sequence[index] != base:
 sequence = best_sequence.copy()
 sequence[index] = base
 score = float(model.predict_on_batch([dc.metrics.to_one_hot(sequence, 4)]))
 if score > best_score:
 best_sequence = sequence
 best_score = score

This rapidly leads to sequences that maximize the predicted probability. Within 1,000
steps, we usually find the output has saturated and equals 1.0.

Figure 10-5 shows 10 sequences generated by this process. All instances of the three
most common binding patterns (TGACTCA, TGAGTCA, and TGACGTCA) are
highlighted. Every sequence contains at least one occurrence of one of these patterns,
and usually three or four. Sequences that maximize the model’s output have exactly
the properties we expect them to, which gives us confidence that the model is work‐
ing well.

Figure 10-5. Example sequences that have been optimized to maximize the model’s out‐
put.

Predicting Uncertainty
Even when you have convinced yourself that a model produces accurate predictions,
that still leaves an important question: exactly how accurate are they? In science, we
are rarely satisfied with just a number; we want an uncertainty for every number. If
the model outputs 1.352, should we interpret that as meaning the true value is
between 1.351 and 1.353? Or between 0 and 3?

172 | Chapter 10: Interpretation of Deep Models

2 Kendall, A., and Y. Gal, “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?”
https://arxiv.org/abs/1703.04977. 2017.

As a concrete example, we will use the solubility model from Chapter 4. Recall that
this model takes a molecule as input, represented as a molecular graph, and outputs a
number indicating how easily it dissolves in water. We built and trained the model
with the following code.

tasks, datasets, transformers = dc.molnet.load_delaney(featurizer='GraphConv')
train_dataset, valid_dataset, test_dataset = datasets
model = GraphConvModel(n_tasks=1, mode='regression', dropout=0.2)
model.fit(train_dataset, nb_epoch=100)

When we first examined this model, we evaluated its accuracy on the test set and
declared ourselves satisfied. Now let’s try to do a better job of quantifying its accuracy.

A very simple thing we might try doing is just to compute the root-mean-squared
(RMS) error of the model’s predictions on the test set:

y_pred = model.predict(test_dataset)
print(np.sqrt(np.mean((test_dataset.y-y_pred)**2)))

This reports an RMS error of 0.396. Should we therefore use that as the expected
uncertainty in all predictions made by the model? If the test set is representative of all
inputs the model will be used on, and if all errors follow a single distribution, that
might be a reasonable thing to do. Unfortunately, neither of those is a safe assump‐
tion! Some predictions may have much larger errors than others, and depending on
the particular molecules that happen to be in the test set, their average error might be
either higher or lower than what you will encounter in practice.

We really want to associate a different uncertainty with every output. We want to
know in advance which predictions are more accurate and which are less accurate. To
do that, we need to consider more carefully the multiple factors that contribute to
errors in a model’s predictions.2 As we will see, there are two fundamentally different
types of uncertainty that must be included.

Figure 10-6 shows the true versus predicted solubilities of the molecules in the train‐
ing set. The model is doing a very good job of reproducing the training set, but not a
perfect job. The points are distributed in a band with finite width around the diago‐
nal. Even though it was trained on those samples, the model still has some error when
predicting them. Given that, we have to expect it to have at least as much error on
other data it was not trained on.

Predicting Uncertainty | 173

https://arxiv.org/abs/1703.04977

Figure 10-6. True versus predicted solubilities for the molecules in the training set.

Notice that we are only looking at the training set. This uncertainty can be deter‐
mined entirely from information that is available at training time. That means we can
train a model to predict it! We can add another set of outputs to the model: for every
value it predicts, it will also output an estimate of the uncertainty in that prediction.

Now consider Figure 10-7. We have repeated the training process 10 times, giving us
10 different models. We have used each of them to predict the solubility of 10 mole‐
cules from the test set. All of the models were trained on the same data, and they have
similar errors on the training set, yet they produce different predictions for the test
set molecules! For each molecule, we get a range of different solubilities depending
on which model we use.

Figure 10-7. Solubilities of 10 molecules from the test set, as predicted by a set of models
all trained on the same data.

174 | Chapter 10: Interpretation of Deep Models

This is a fundamentally different type of uncertainty, known as epistemic uncertainty.
It comes from the fact that many different models fit the training data equally well,
and we don’t know which one is “best.”

A straightforward way to measure epistemic uncertainty is to train many models and
compare their results, as we have done in Figure 10-7. Often this is prohibitively
expensive, however. If you have a large, complicated model that takes weeks to train,
you don’t want to repeat the process many times.

A much faster alternative is to train a single model using dropout, then predict each
output many times with different dropout masks. Usually dropout is only performed
at training time. If 50% of the outputs from a layer are randomly set to 0 in each
training step, at test time you would instead multiply every output by 0.5. But let’s not
do that. Let’s randomly set half the outputs to 0, then repeat the process with many
different random masks to get a collection of different predictions. The variation
between the predicted values gives a pretty good estimate of the epistemic uncer‐
tainty.

Notice how your modeling choices involve trade offs between these two kinds of
uncertainty. If you use a large model with lots of parameters, you can get it to fit the
training data very closely. That model will probably be underdetermined, however, so
lots of combinations of parameter values will fit the training data equally well. If
instead you use a small model with few parameters, there is more likely to be a
unique set of optimal parameter values, but it probably also won’t fit the training set
as well. In either case, both types of uncertainty must be included when estimating
the accuracy of the model’s predictions.

This sounds complicated. How do we do it in practice? Fortunately, DeepChem
makes it very easy. Just include one extra argument to the model’s constructor:

model = GraphConvModel(n_tasks=1, mode='regression',
 dropout=0.2, uncertainty=True)

By including the option uncertainty=True, we tell the model to add the extra out‐
puts for uncertainty and make necessary changes to the loss function. Now we can
make predictions like this:

y_pred, y_std = model.predict_uncertainty(test_dataset)

This computes the model’s output many times with different dropout masks, then
returns the average value for each output element, along with an estimate of the stan‐
dard deviation of each one.

Figure 10-8 shows how it works on the test set. For each sample, we plot the actual
error in the prediction versus the model’s uncertainty estimate. The data shows a clear
trend: samples with large predicted uncertainty tend to have larger errors than those
with small predicted uncertainty. The dotted line corresponds to y = 2x. Points below

Predicting Uncertainty | 175

this line have predicted solubilities that are within two (predicted) standard devia‐
tions of the true value. Roughly 90% of the samples are within this region.

Figure 10-8. True error in the model’s predictions, versus its estimates of the uncertainty
in each value.

Interpretability, Explainability, and Real-World
Consequences
The greater the consequences of a wrong prediction, the more important it is to
understand how the model works. For some models, individual predictions are
unimportant. A chemist working in the early stages of drug development might use a
model to screen millions of potential compounds and select the most promising ones
to synthesize. The accuracy of the model’s predictions may be low, but that is accepta‐
ble. As long as the passing compounds are, on average, better than the rejected ones,
it is serving a useful purpose.

In other cases, every prediction matters. When a model is used to diagnose a disease
or recommend a treatment, the accuracy of each result can literally determine
whether a patient lives or dies. The question “Should I trust this result?” becomes
vitally important.

Ideally the model should produce not just a diagnosis, but also a summary of the evi‐
dence supporting that diagnosis. The patient’s doctor could examine the evidence and
make an informed decision about whether the model has functioned correctly in that
particular case. A model that has this property is said to be explainable.

Unfortunately, far too many deep learning models are not explainable. In that case,
the doctor is faced with a difficult choice. Do they trust the model, even if they have
no idea what evidence a result is based on? Or do they ignore the model and rely on
their own judgment? Neither choice is satisfactory.

176 | Chapter 10: Interpretation of Deep Models

Remember this principle: every model ultimately interacts with humans. To evaluate
the quality of a model, you must include those interactions in your analysis. Often
they depend as much on psychology or economics as on machine learning. It is not
enough to compute a correlation coefficient or ROC AUC on the model’s predictions.
You must also consider who will see those predictions, how they will be interpreted,
and what real-world effects they will ultimately have.

Making a model more interpretable or explainable may not affect the accuracy of its
predictions, but it can still have a huge impact on the real-world consequences of
those predictions. It is an essential part of model design.

Conclusion
Deep models have a reputation of being hard to interpret, but many useful techniques
have been developed that can help. By using these techniques you can begin to under‐
stand what your model is doing and how it is working. That helps you decide whether
to trust it, and lets you identify situations where it is likely to fail. It also may give new
insights into the data. For example, by analyzing the TF binding model we discovered
the binding motif for a particular transcription factor.

Conclusion | 177

CHAPTER 11

A Virtual Screening Workflow Example

Virtual screening can provide an efficient and cost-effective means of identifying
starting points for drug discovery programs. Rather than carrying out an expensive,
experimental high-throughput screen (HTS), we can use computational methods to
virtually evaluate millions, or even tens of millions, of molecules. Virtual screening
methods are often grouped into two categories, structure-based virtual screening and
ligand-based virtual screening.

In a structure-based virtual screen, computational methods are used to identify mole‐
cules that will optimally fit into a cavity, known as a binding site, in a protein. The
binding of a molecule into the protein binding site can often inhibit the function of
the protein. For instance, proteins known as enzymes catalyze a variety of physiologi‐
cal chemical reactions. By identifying and optimizing inhibitors of these enzymatic
processes, scientists have been able to develop treatments for a wide range of diseases
in oncology, inflammation, infection, and other therapeutic areas.

In a ligand-based virtual screen, we search for molecules that function similarly to
one or more known molecules. We may be looking to improve the function of an
existing molecule, to avoid pharmacological liabilities associated with a known mole‐
cule, or to develop novel intellectual property. A ligand-based virtual screen typically
starts with a set of known molecules identified through any of a variety of experimen‐
tal methods. Computational methods are then used to develop a model based on
experimental data, and this model is used to virtually screen a large set of molecules
to find new chemical starting points.

In this chapter, we will walk through a practical example of a virtual screening work‐
flow. We will examine the code used to carry out components of the virtual screen as
well as the thought process behind decisions made throughout the analysis. In this
particular case, we will carry out a ligand-based virtual screen. We will use a set of
molecules known to bind to a particular protein, as well as a set of molecules assumed

179

to not bind, to train a convolutional neural network to identify new molecules with
the potential to bind to the target.

Preparing a Dataset for Predictive Modeling
As a first step, we will build a graph convolution model to predict the ability of mole‐
cules to inhibit a protein known as ERK2. This protein, also known as mitogen-
activated protein kinase 1, or MAPK1, plays an important role in the signaling
pathways that regulate how cells multiply. ERK2 has been implicated in a number of
cancers, and ERK2 inhibitors are currently being tested in clinical trials for non-
small-cell lung cancer and melanoma (skin cancer).

We will train the model to distinguish a set of ERK2 active compounds from a set of
decoy compounds. The active and decoy compounds are derived from the DUD-E
database, which is designed for testing predictive models. In practice, we would typi‐
cally obtain active and inactive molecules from the scientific literature, or from a
database of biologically active molecules such as the ChEMBL database from the
European Bioinformatics Institute (EBI). In order to generate the best model, we
would like to have decoys with property distributions similar to those of our active
compounds. Let’s say this was not the case and the inactive compounds had lower
molecular weight than the active compounds. In this case, our classifier might be
trained simply to separate low molecular weight compounds from high molecular
weight compounds. Such a classifier would have very limited utility in practice.

In order to better understand the dataset, let’s examine a few calculated properties of
our active and decoy molecules. To build a reliable model, we need to ensure that the
properties of the active molecules are similar to those of the decoy molecules.

First, let’s import the necessary libraries:

from rdkit import Chem # RDKit libraries for chemistry functions
from rdkit.Chem import Draw # Drawing chemical structures
import pandas as pd # Dealing with data in tables
from rdkit.Chem import PandasTools # Manipulating chemical data
from rdkit.Chem import Descriptors # Calculating molecular descriptors
from rdkit.Chem import rdmolops # Additional molecular properties
import seaborn as sns # Making graphs

In this exercise, molecules are represented using SMILES strings. For more informa‐
tion on SMILES, please see Chapter 4. We can now read a SMILES file into a Pandas
dataframe and add an RDKit molecule to the dataframe. While the input SMILES file
is not technically a CSV file, the Pandas read_CSV() function can read it as long as we
specify the delimiter, which in this case is a space:

active_df = pd.read_CSV("mk01/actives_final.ism",header=None,sep=" ")
active_rows,active_cols = active_df.shape
active_df.columns = ["SMILES","ID","ChEMBL_ID"]

180 | Chapter 11: A Virtual Screening Workflow Example

http://dud.docking.org/
http://dud.docking.org/
https://www.ebi.ac.uk/chembl/

active_df["label"] = ["Active"]*active_rows
PandasTools.AddMoleculeColumnToFrame(active_df,"SMILES","Mol")

Let’s define a function to add the calculated properties to a dataframe:

def add_property_columns_to_df(df_in):
df_in["mw"] = [Descriptors.MolWt(mol) for mol in
df_in.Mol]
df_in["logP"] = [Descriptors.MolLogP(mol) for mol in
df_in.Mol]
df_in["charge"] = [rdmolops.GetFormalCharge(mol) for mol
in df_in.Mol]

With this function in hand, we can calculate the molecular weight, LogP, and formal
charge of the molecules. These properties encode the size of a molecule, its ability to
partition from an oily substance (octanol) to water, and whether the molecule has a
positive or negative charge. Once we have these properties we can compare the distri‐
butions for the active and decoy sets:

add_property_columns_to_df(active_df)

Let’s look at the first few rows of our dataframe to ensure that the contents of the
dataframe match the input file (see Table 11-1):

active_df.head()

Table 11-1. The first few lines of the active_df dataframe.

 SMILES ID ChEMBL_ID label
0 Cn1ccnc1Sc2ccc(cc2Cl)Nc3c4cc(c(cc4ncc3C#N)OCCCN5CCOCC5)OC 168691 CHEMBL318804 Active
1 C[C@@]12[C@@H]([C@@H]

(CC(O1)n3c4ccccc4c5c3c6n2c7ccccc7c6c8c5C(=O)NC8)NC)OC
86358 CHEMBL162 Active

2 Cc1cnc(nc1c2cc([nH]c2)C(=O)N[C@H](CO)c3cccc(c3)Cl)Nc4cccc5c4OC(O5)(F)F 575087 CHEMBL576683 Active
3 Cc1cnc(nc1c2cc([nH]c2)C(=O)N[C@H](CO)c3cccc(c3)Cl)Nc4cccc5c4OCO5 575065 CHEMBL571484 Active
4 Cc1cnc(nc1c2cc([nH]c2)C(=O)N[C@H](CO)c3cccc(c3)Cl)Nc4cccc5c4CCC5 575047 CHEMBL568937 Active

Now let’s do the same thing with the decoy molecules:

decoy_df = pd.read_CSV("mk01/decoys_final.ism",header=None,sep=" ")
decoy_df.columns = ["SMILES","ID"]
decoy_rows, decoy_cols = decoy_df.shape
decoy_df["label"] = ["Decoy"]*decoy_rows
PandasTools.AddMoleculeColumnToFrame(decoy_df,"SMILES","Mol")
add_property_columns_to_df(decoy_df)

In order to build a model, we need a single dataframe with the active and decoy mole‐
cules. We can use the Pandas append function to add the two dataframes and create a
new dataframe called tmp_df:

tmp_df = active_df.append(decoy_df)

Preparing a Dataset for Predictive Modeling | 181

With properties calculated for both the active and decoy sets, we can compare the
properties of the two sets of molecules. To do the comparison, we will use violin plots.
A violin plot is analogous to a boxplot. The violin plot provides a mirrored, horizon‐
tal view of a frequency distribution. Ideally, we would like to see similar distributions
for the active and decoy sets. The results are shown in Figure 11-1:

sns.violinplot(tmp_df["label"],tmp_df["mw"])

Figure 11-1. Violin plots of molecular weight for the active and decoy sets.

An examination of these plots shows that the molecular weight distributions for the
two sets are roughly equivalent. The decoy set has more low molecular weight mole‐
cules, but the center of the distribution, shown as a box in the middle of each violin
plot, is in a similar location in both plots.

We can use violin plots to perform a similar comparison of the LogP distributions
(Figure 11-2). Again, we can see that the distributions are similar, with a few more of
the decoy molecules at the lower end of the distribution:

sns.violinplot(tmp_df["label"],tmp_df["logP"])

182 | Chapter 11: A Virtual Screening Workflow Example

Figure 11-2. Violin plots of LogP for the active and decoy sets.

Finally, we perform the same comparison with the formal charges of the molecules
(Figure 11-3):

sns.violinplot(new_tmp_df["label"],new_tmp_df["charge"])

Figure 11-3. Violin plots of formal charge for the active and decoy sets.

In this case, we see a significant difference. All of the active molecules are neutral,
having charges of 0, while some of the decoys are charged, with charges of +1 or –1.
Let see what fraction of the decoy molecules are charged. We can do this by creating a
new dataframe with just the charged molecules:

Preparing a Dataset for Predictive Modeling | 183

charged = decoy_df[decoy_df["charge"] != 0]

A Pandas dataframe has a property, shape, that returns the number of rows and col‐
umns in the dataframe. As such, element [0] in the shape property will be the num‐
ber of rows. Let’s divide the number of rows in our dataframe of charged molecules
by the total number of rows in the decoy dataframe:

charged.shape[0]/decoy_df.shape[0]

This returns 0.162. As we saw in the violin plot, approximately 16% of the decoy mol‐
ecules are charged. This appears to be because the active and decoy sets were not pre‐
pared in a consistent fashion. We can address this problem by modifying the
chemical structures of the decoy molecules to neutralize their charges. Fortunately we
can do this easily with the NeutraliseCharges() function from the RDKit Cook‐
book:

from neutralize import NeutraliseCharges

In order to avoid confusion, we create a new dataframe with the SMILES stings, IDs,
and labels for the decoys:

revised_decoy_df = decoy_df[["SMILES","ID","label"]].copy()

With this new dataframe in hand, we can replace the original SMILES strings with the
strings for the neutral forms of the molecules. The NeutraliseCharges function
returns two values. The first is the SMILES string for the neutral form of the molecule
and the second is a Boolean variable indicating whether the molecule was changed. In
the following code, we only need the SMILES string, so we use the first element of the
tuple returned by NeutraliseCharges.

revised_decoy_df["SMILES"] = [NeutraliseCharges(x)[0] for x
in revised_decoy_df["SMILES"]]

Once we’ve replaced the SMILES strings, we can add a molecule column to our new
dataframe and calculate the properties again:

PandasTools.AddMoleculeColumnToFrame(revised_decoy_df,"SMILES","Mol")
add_property_columns_to_df(revised_decoy_df)

We can then append the dataframe with the active molecules to the one with the
revised, neutral decoys:

new_tmp_df = active_df.append(revised_decoy_df)

Next, we can generate a new boxplot to compare the charge distributions of the active
molecules with those of our neutralized decoys (Figure 11-4):

sns.violinplot(new_tmp_df["label"],new_tmp_df["charge"])

184 | Chapter 11: A Virtual Screening Workflow Example

https://www.rdkit.org/docs/Cookbook.html
https://www.rdkit.org/docs/Cookbook.html

Figure 11-4. Violin plots of the charge distribution for our revised decoy set.

An examination of the plots shows that there are now very few charged molecules in
the decoy set. We can use the same technique we used earlier to create a dataframe
with only the charged molecules. We then use this dataframe to determine the num‐
ber of charged molecules remaining in the set:

charged = revised_decoy_df[revised_decoy_df["charge"] != 0]
charged.shape[0]/revised_decoy_df.shape[0]

The result now is 0.003. We have reduced the fraction of charged molecules from 16%
to 0.3%. We can now be confident that our active and decoy sets are reasonably well
balanced.

In order to use these datasets with DeepChem, we need to write the molecules out as
a CSV file containing for each molecule the SMILES string, ID, Name, and an integer
value indicating whether the compounds are active (labeled as 1) or inactive (labeled
as 0):

active_df["is_active"] = [1] * active_df.shape[0]
revised_decoy_df["is_active"] = [0] * revised_decoy_df.shape[0]
combined_df = active_df.append(revised_decoy_df)[["SMILES","ID","is_active"]]
combined_df.head()

The first five lines are shown in Table 11-2.

Preparing a Dataset for Predictive Modeling | 185

Table 11-2. The first few lines of our new combined dataframe

 SMILES ID is_active
0 Cn1 ccnc1Sc2ccc(cc2Cl}Nc3c4cc(c(cc4ncc3C#N}OCCCN5CCOCC5)OC 168691 1
1 C[C@@]12[C@@H]([C@@H](CC(O1)n3c4ccccc4c5c3c6n2c7ccccc7c6c8c5C(=O)NC8)NC)OC 86358 1
2 Cc1cnc(nc1c2cc([nH]c2)C(=0) N[C@H](CO)c3cccc(c3}Cl}Nc4cccc5c4OC(O5)(F)F 575087 1
3 CCc1cnc(nc1c2cc([nH]c2)C(=O)N[C@H](CO)c3cccc(c3}Cl}Nc4cccc5c4OCO5 575065 1
4 Cc1cnc(nc1c2cc([nH]c2)C(=0) N[C@H](CO)c3cccc(c3}Cl}Nc4cccc5c4CCC5 575047 1

Our final step in this section is to save our new combined_df as a CSV file. The
index=False option causes Pandas to not include the row number in the first col‐
umn:

combined_df.to_csv("dude_erk1_mk01.CSV",index=False)

Training a Predictive Model
Now that we have taken care of formatting, we can use this data to train a graph con‐
volution model. First, we need to import the necessary libraries. Some of these libra‐
ries were imported in the first section, but let’s assume we are starting with the CSV
file we created in the previous section:

import deepchem as dc # DeepChem libraries
from deepchem.models import GraphConvModel # Graph convolutions
import numpy as np # NumPy for numeric operations
import sys # Error handling
import pandas as pd # Data table manipulation
import seaborn as sns # Seaborn library for plotting
from rdkit.Chem import PandasTools # Chemical structures in Pandas

Now let’s define a function to create a GraphConvModel. In this case, we will be creat‐
ing a classification model. Since we will apply the model later on a different dataset,
it’s a good idea to create a directory in which to store the model. You will need to
change the directory to something accessible on your filesystem:

def generate_graph_conv_model():
batch_size = 128
model = GraphConvModel(1, batch_size=batch_size,
mode='classification',
model_dir="/tmp/mk01/model_dir")
return model

In order to train the model, we first read in the CSV file we created in the previous
section:

dataset_file = "dude_erk2_mk01.CSV"
tasks = ["is_active"]
featurizer = dc.feat.ConvMolFeaturizer()

186 | Chapter 11: A Virtual Screening Workflow Example

loader = dc.data.CSVLoader(tasks=tasks,
smiles_field="SMILES",
featurizer=featurizer)
dataset = loader.featurize(dataset_file, shard_size=8192)

Now that we have the dataset loaded, let’s build a model. We will create training and
test sets to evaluate the model’s performance. In this case, we will use the Random
Splitter (DeepChem offers a number of other splitters too, such as the ScaffoldS
plitter, which divides the dataset by chemical scaffold, and the ButinaSplitter,
which first clusters the data then splits the dataset so that different clusters end up in
the training and test sets):

splitter = dc.splits.RandomSplitter()

With the dataset split, we can train a model on the training set and test that model on
the validation set. At this point, we need to define some metrics and evaluate the per‐
formance of our model. In this case, our dataset is unbalanced: we have a small num‐
ber of active compounds and a large number of inactive compounds. Given this
difference, we need to use a metric that reflects the performance on unbalanced data‐
sets. One metric that is appropriate for datasets like this is the Matthews correlation
coefficient (MCC):

metrics = [
dc.metrics.Metric(dc.metrics.matthews_corrcoef, np.mean,
mode="classification")]

In order to evaluate the performance of our model, we will perform 10 folds of cross
validation, where we train a model on the training set and validate on the validation
set:

training_score_list = []
validation_score_list = []
transformers = []
cv_folds = 10
for i in range(0, cv_folds):
model = generate_graph_conv_model()
res = splitter.train_valid_test_split(dataset)
train_dataset, valid_dataset, test_dataset = res
model.fit(train_dataset)
train_scores = model.evaluate(train_dataset, metrics,
transformers)
training_score_list.append(
train_scores["mean-matthews_corrcoef"])
validation_scores = model.evaluate(valid_dataset,
metrics,
transformers)
validation_score_list.append(
validation_scores["mean-matthews_corrcoef"])
print(training_score_list)
print(validation_score_list)

Training a Predictive Model | 187

To visualize the performance of our model on the training and test data, we can make
boxplots. The results are shown in Figure 11-5:

sns.boxplot(
["training"] * cv_folds + ["validation"] * cv_folds,
training_score_list + validation_score_list)

Figure 11-5. Boxplots of scores for the training and validation sets.

The plots indicate that, as expected, the performance on the training set is superior to
that on the validation set. However, the performance on the validation set is still quite
good. At this point, we can be confident in the performance of our model.

It is also useful to visualize the results of our model. In order to do this, we will gener‐
ate a set of predictions for a validation set:

pred = [x.flatten() for x in model.predict(valid_dataset)]

To make processing easier, we’ll create a Pandas dataframe with the predictions:

pred_df = pd.DataFrame(pred,columns=["neg","pos"])

We can easily add the activity class (1 = active, 0 = inactive) and the SMILES strings
for our predicted molecules to the dataframe:

pred_df["active"] = [int(x) for x in valid_dataset.y]
pred_df["SMILES"] = valid_dataset.ids

It’s always a good idea to look at the first few lines of the dataframe to ensure that the
data makes sense. Table 11-3 shows the results.

188 | Chapter 11: A Virtual Screening Workflow Example

Table 11-3. The first few lines of the dataframe containing the predictions

 neg pos active SMILES
0 0.906081 0.093919 1 Cn1ccnc1Sc2ccc(cc2Cl)Nc3c4cc(c(cc4ncc3C#N)OCCC...
1 0.042446 0.957554 1 Cc1cnc(nc1c2cc([nH]c2)C(=O)N[C@H](CO)c3cccc(c3...
2 0.134508 0.865492 1 Cc1cccc(c1)[C@@H](CO)NC(=O)c2cc(c[nH]2)c3c(cnc...
3 0.036508 0.963492 1 Cc1cnc(nc1c2cc([nH]c2)C(=O)N[C@H](CO)c3ccccc3)...
4 0.940717 0.059283 1 c1c\2c([nH]c1Br)C(=O)NCC/C2=C/3\C(=O)N=C(N3)N

Creating boxplots enables us to compare the predicted values for the active and inac‐
tive molecules (see Figure 11-6).

sns.boxplot(pred_df.active,pred_df.pos)

Figure 11-6. Positive scores for the predicted molecules.

The performance of our model is very good: we can see a clear separation between
the active and inactive molecules. When building a predictive model it is often
important to examine inactive molecules that are predicted as active (false positives)
as well as active molecules that are predicted as inactive (false negatives). It appears
that only one of our active molecules received a low positive score. In order to look
more closely, we will create a new dataframe containing all of the active molecules
with a positive score < 0.5):

false_negative_df = pred_df.query("active == 1 & pos < 0.5").copy()

To inspect the chemical structures of the molecules in our dataframe, we use the Pan
dasTools module from RDKit:

PandasTools.AddMoleculeColumnToFrame(false_negative_df,
"SMILES", "Mol")

Training a Predictive Model | 189

Let’s look at the new dataframe (Figure 11-7):

false_negative_df

Figure 11-7. False negative predictions.

In order to fully take advantage of the information in this dataframe, we need to have
some knowledge of medicinal chemistry. It is often informative to look at the chemi‐
cal structures of the false negative molecules and compare these with the chemical
structures of the true positive molecules. This may provide some insight into the rea‐
sons that molecules were not predicted correctly. Often it may be the case that the
false negative molecules are not similar to any of the true positive molecules. In this
case, it may be worth performing additional literature searches to increase the diver‐
sity of the molecules in the training set.

We can use a similar approach to examine the false positive molecules, which are
inactive but received a positive score > 0.5 (see Figure 11-8). Again, comparison with
the chemical structures of the true positive molecules may be informative:

false_positive_df = pred_df.query(
 "active == 0 & pos > 0.5").copy()
PandasTools.AddMoleculeColumnToFrame(false_positive_df,
 "SMILES", "Mol")
false_positive_df

Figure 11-8. A false positive molecule.

190 | Chapter 11: A Virtual Screening Workflow Example

During the model training phase, our objective was to evaluate the performance of
our model. As such, we trained the model on a portion of the data and validated the
model on the remainder. Now that we have evaluated the performance, we want to
generate the most effective model. In order to do this, we will train the model on all
of the data:

model.fit(dataset)

This gives us an accuracy score of 91%. Finally, we save the model to disk so that we
can use it to make future predictions:

model.save()

Preparing a Dataset for Model Prediction
Now that we’ve created a predictive model, we can apply this model to a new set of
molecules. In many cases, we will build a predictive model based on literature data,
then apply that model to a set of molecules that we want to screen. The molecules we
want to screen may come from an internal database or from a commercially available
screening collection. As an example, we will use the predictive model we created to
screen a small sample of 100,000 compounds from the ZINC database, a collection of
more than 1 billion commercially available molecules.

One potential source of difficulty when carrying out a virtual screen is the presence of
molecules that have the potential to interfere with biological assays. Over the last 25
years, many groups within the scientific community have developed sets of rules to
identify potentially reactive or problematic molecules. Several of these rule sets,
which are encoded as SMARTS strings, have been collected by the group that curates
the ChEMBL database. These rule sets have been made available through a Python
script called rd_filters.py. In this example, we will use rd_filters.py to identify poten‐
tially problematic molecules in our set of 100,000 molecules from the ZINC database.

The rd_filters.py script and associated data files are available on our GitHub reposi‐
tory.

The available modes and arguments for the script can be obtained by calling it with
the -h flag.

rd_filters.py -h

Usage:
rd_filters.py $ filter --in INPUT_FILE --prefix PREFIX [--rules RULES_FILE_NAME]
[--alerts ALERT_FILE_NAME][--np NUM_CORES]
rd_filters.py $ template --out TEMPLATE_FILE [--rules RULES_FILE_NAME]
Options:
--in INPUT_FILE input file name
--prefix PREFIX prefix for output file names
--rules RULES_FILE_NAME name of the rules JSON file
--alerts ALERTS_FILE_NAME name of the structural alerts file

Preparing a Dataset for Model Prediction | 191

https://github.com/deepchem/DeepLearningLifeSciences
https://github.com/deepchem/DeepLearningLifeSciences

--np NUM_CORES the number of cpu cores to use (default is all)
--out TEMPLATE_FILE parameter template file name

To call the script on our input file, which is called zinc_100k.smi, we can specify the
input file and a prefix for output filenames. The filter argument calls the script in
“filter” mode, where it identifies potentially problematic molecules. The --prefix
argument indicates that the output file names will start with the prefix zinc.

rd_filters.py filter --in zinc_100k.smi --prefix zinc

using 24 cores
Using alerts from Inpharmatica
Wrote SMILES for molecules passing filters to zinc.smi
Wrote detailed data to zinc.CSV
68752 of 100000 passed filters 68.8%
Elapsed time 15.89 seconds

The output indicates the following:

• The script is running on 24 cores. It runs in parallel across multiple cores, and
the number of cores can be selected with the -np flag.

• The script is using the “Inpharmatica” set of rules. This rule set covers a large
range of chemical functionality that has been shown to be problematic in biologi‐
cal assays. In addition to the Inpharmaticia set, the script has seven other rule
sets available. Please see the rd_filters.py documentation for more information.

• SMILES strings for the molecules passing the filters were written to a file called
zinc.smi. We will use this as the input when we use the predictive model.

• Detailed information on which compounds triggered particular structural alerts
was written to a file called zinc.CSV.

• 69% of the molecules passed the filters, and 31% were considered problematic.

It is informative to take a look at the reasons why 31% of the molecules were rejected.
This can let us know whether we need to adjust any of the filters. We will use a bit of
Python code to look at the first few lines of output, shown in Table 11-4.

import pandas as pd
df = pd.read_CSV("zinc.CSV")
df.head()

Table 11-4. The first few lines of the dataframe created from zinc.CSV

 SMILES NAME FILTER MW LogP HBD
0 CN(CCO)C[C@@H]

(O)Cn1cnc2c1c(=O)n(C)c(=O)n2C
ZINC000000000843 Filter82_pyridinium

>0
311.342 –2.2813 2

1 O=c1[nH]c(=O)n([C@@H]2C[C@@H](O)[C@H]
(CO)O2)cc1Br

ZINC000000001063 Filter82_pyridinium
>0

307.100 –1.0602 3

192 | Chapter 11: A Virtual Screening Workflow Example

 SMILES NAME FILTER MW LogP HBD
2 Cn1c2ncn(CC(=O)N3CCOCC3)c2c(=O)n(C)c1=O ZINC000000003942 Filter82_pyridinium

>0
307.310 –1.7075 0

3 CN1C(=O)C[C@H]
(N2CCN(C(=O)CN3CCCC3)CC2)C1=O

ZINC000000036436 OK 308.382 –1.0163 0

4 CC(=O)NC[C@H](O)[C@H]1O[C@H]2OC(C)
(C)O[C@H]2[C...

ZINC
000000041101

OK 302.327 -1.1355 3

The dataframe has six columns:

SMILES
the SMILES strings for each molecule.

NAME
the molecule NAME, as listed in the input file.

FILTER
the reason the molecule was rejected, or “OK” if the molecule was not rejected.

MW
the molecular weight of the molecule. By default, molecules with molecular
weight greater than 500 are rejected.

LogP
the calculated octanol/water partition coefficient of the molecule. By default,
molecules with LogP greater than five are rejected.

HBD
the number of hydrogen bond donors. By default, molecules with more than 5
hydrogen bond donors are rejected.

We can use the Counter class from the Python collections library to identify which
filters were responsible for removing the largest numbers of molecules (see
Table 11-5):

from collections import Counter
count_list = list(Counter(df.FILTER).items())
count_df = pd.DataFrame(count_list,columns=["Rule","Count"])
count_df.sort_values("Count",inplace=True,ascending=False)
count_df.head()

Preparing a Dataset for Model Prediction | 193

Table 11-5. Counts of the number of molecules selected by the top 5 filters

 Rule Count
1 OK 69156
6 Filter41_12_dicarbonyl > O 19330
0 Filter82_pyridinium > O 7761
10 Filter93_acetyl_urea > O 1541
11 Filter78_bicyclic_lmide > O 825

The first line in the table, labeled as “OK,” indicates the number of molecules that
were not eliminated by any of the filters. From this, we can see that 69,156 of the mol‐
ecules in our input passed all of the filters. The largest number of molecules (19,330)
were rejected because they contained a 1,2-dicarbonyl group. Molecules of this type
may react and form covalent bonds with protein residues such as serine and cysteine.
We can find the SMARTS pattern used to identify these molecules by looking for the
string “Filter41_12_dicarbonyl” in the filter_collection.CSV file that is part of the
rd_filters.py distribution. The SMARTS pattern is “*C(=O)C(=O)*”, which represents:

• Any atom, connected to
• carbon double bonded to oxygen, connected to
• carbon double bonded to oxygen, connected to
• any atom.

It is always good to look at the data and ensure that everything is working as
expected. We can use the highlightAtomLists argument to RDKit’s MolsToGrid
Image() function to highlight the 1,2-dicarbonyl functionality (see Figure 11-9):

from rdkit import Chem
from rdkit.Chem import Draw

mol_list = [Chem.MolFromSmiles(x) for x in smiles_list]
dicarbonyl = Chem.MolFromSmarts('*C(=O)C(=O)*')
match_list = [mol.GetSubstructMatch(dicarbonyl) for mol in
 mol_list]
Draw.MolsToGridImage(mol_list,
 highlightAtomLists=match_list,
 molsPerRow=5)

We can see that the molecules do indeed have dicarbonyl groups, as highlighted in the
figure. If we wanted to, we could similarly evaluate other filters. At this point, how‐
ever, we can be satisfied with the results of the filtering. We have removed the prob‐
lematic molecules from the set we plan to use for our virtual screen. We can now use
this set, which is in the file zinc.smi, in the next step of this exercise.

194 | Chapter 11: A Virtual Screening Workflow Example

Figure 11-9. Molecules containing a 1,2-dicarbonyl group.

Applying a Predictive Model
The GraphConvMdel we created can now be used to search the set of commercially
available compounds we just filtered. Applying the model requires a few steps:

1. Load the model from disk.
2. Create a featurizer.
3. Read and featurize the molecules that will run through the model.
4. Examine the scores for the predictions.
5. Examine the chemical structures of the top predicted molecules.
6. Cluster the selected molecules.
7. Write the selected molecules from each cluster to a CSV file.

We begin by importing the necessary libraries:

import deepchem as dc # DeepChem libraries
import pandas as pd # Pandas for tables
from rdkit.Chem import PandasTools, Draw # Chemistry in Pandas
from rdkit import DataStructs # For fingerprint handling
from rdkit.ML.Cluster import Butina # Cluster molecules
from rdkit.Chem import rdMolDescriptors as rdmd # Descriptors
import seaborn as sns # Plotting

and loading the model we generated earlier:

model = dc.models.TensorGraph.load_from_dir(""/tmp/mk01/model_dir"")

To generate predictions from our model, we first need to featurize the molecules we
plan to use to generate predictions. We do this by instantiating a DeepChem ConvMol
Featurizer:

Applying a Predictive Model | 195

featurizer = dc.feat.ConvMolFeaturizer()

In order to featurize the molecules, we need to transform our SMILES file into a CSV
file. In order to create a DeepChem featurizer we also require an activity column, so
we add one, then write the file to CSV:

df = pd.read_CSV("zinc.smi",sep=" ",header=None)
df.columns=["SMILES","Name"]
rows,cols = df.shape
Just add add a dummy column to keep the featurizer happy
df["Val"] = [0] * rows

As before, we should look at the first few lines of the file (shown in Table 11-6) to
make sure everything is as we had expect:

df.head()

Table 11-6. The first few lines of the input file

 SMILES Name Val
0 CN1C(=O)C[C@H](N2CCN(C(=O)CN3CCCC3)CC2)C1=O ZINC000000036436 0
1 CC(=O)NC[C@H](O)[C@H]1O[C@H]2OC(C)(C)O[C@H]2[C@@H]1NC(C)=O ZINC000000041101 0
2 C1CN(c2nc(-c3nn[nH]n3)nc(N3CCOCC3)n2)CCO1 ZINC000000054542 0
3 OCCN(CCO)c1nc(Cl)nc(N(CCO)CCO)n1 ZINC000000109481 0
4 COC(=O)c1ccc(S(=O)(=O)N(CCO)CCO)n1C ZINC000000119782 0

Note that the Val column is just a placeholder to keep the DeepChem featurizer
happy. The file looks good, so we will write it as a CSV file to use as input for Deep‐
Chem. We use the index=False argument to prevent Pandas from writing the row
numbers as the first column:

infile_name = "zinc_filtered.CSV"
df.to_CSV(infile_name,index=False)

We can use DeepChem to read this CSV file with a loader and featurize the molecules
we plan to predict:

loader = dc.data.CSVLoader(tasks=['Val'],
 smiles_field="SMILES",
 featurizer=featurizer)
dataset = loader.featurize(infile_name, shard_size=8192)

The featurized molecules can be used to generate predictions with the model:

pred = model.predict(dataset)

For convenience,we will put the predictions into a Pandas dataframe:

pred_df = pd.DataFrame([x.flatten() for x in pred],
columns=["Neg", "Pos"]

196 | Chapter 11: A Virtual Screening Workflow Example

The distribution plot, available in the Seaborn library, provides a nice overview of the
distribution of scores. Unfortunately, in virtual screening, there are no clear rules for
defining an activity cutoff. Often the best strategy is to look at the distribution of
scores, then select a set of the top-scoring molecules. If we look at the plot in
Figure 11-10, we can see that there are only a small number of molecules with scores
above 0.3. We can use this value as a preliminary cutoff for molecules that we may
want to screen experimentally.

Figure 11-10. Distribution plot of the scores for the predicted molecules.

We can join the dataframe with the scores to the dataframe with the SMILES strings.
This gives us the ability to view the chemical structures of the top-scoring molecules:

combo_df = df.join(pred_df, how="outer")
combo_df.sort_values("Pos", inplace=True, ascending=False)

As we saw earlier, adding a molecule column to the dataframe enables us to look at
the chemical structures of the hits (see Figure 11-11).

Applying a Predictive Model | 197

Figure 11-11. Chemical structures of the top-scoring molecules.

Based on what we see here, it looks like many of the hits are similar. Let’s look at a few
more molecules (Figure 11-12):

Draw.MolsToGridImage(combo_df.Mol[:10], molsPerRow=5,
 legends=["%.2f" % x for x in combo_df.Pos[:10]])

Figure 11-12. Structure grid with top-scoring hits. Values below the structures are model
scores.

198 | Chapter 11: A Virtual Screening Workflow Example

Indeed, many of the molecules are very similar and might end up being redundant in
our screen. One way to be more efficient would be to cluster the molecules and only
screen the highest-scoring molecule in each cluster. RDKit has an implementation of
the Butina clustering method, one of the most highly used methods in cheminfor‐
matics. In the Butina clustering method, we group molecules based on their chemical
similarity, which is calculated using a comparison of bit vectors (arrays of 1 and 0),
also known as chemical fingerprints that represent the presence or absence of patterns
of connected atoms in a molecule. These bit vectors are typically compared using a
metric known as the Tanimoto coefficient, which is defined as:

Tanimoto = A ∩ B
A ∪ B

The numerator of the equation is the intersection, or the number of bits that are 1 in
both bit vectors A and B. The denominator is the number of bits that are 1 in either
vector A or vector B. The Tanimoto coefficient can range between 0, indicating that
the molecules have no patterns of atoms in common, and 1, indicating that all of the
patterns contained in molecule A are also contained in molecule B. As an example,we
can consider the bit vectors shown in Figure 11-13. The intersection of the two vec‐
tors is 3 bits, while the union is 5. The Tanimoto coefficient is then 3/5, or 0.6. Note
that the example shown here has been simplified for demonstration purposes. In
practice, these bit vectors can contain hundreds or even thousands of bits.

Figure 11-13. Calculating a Tanimoto coefficient.

A small amount of code is necessary to cluster a set of molecules. The only parameter
required for Butina clustering is the cluster cutoff. If the Tanimoto similarity of two
molecules is greater than the cutoff, the molecules are put into the same cluster. If the
similarity is less than the cutoff, the molecules are put into different clusters:

def butina_cluster(mol_list, cutoff=0.35):
 fp_list = [
 rdmd.GetMorganFingerprintAsBitVect(m, 3, nBits=2048)
 for m in mol_list]
 dists = []
 nfps = len(fp_list)

Applying a Predictive Model | 199

 for i in range(1, nfps):
 sims = DataStructs.BulkTanimotoSimilarity(
 fp_list[i], fp_list[:i])
 dists.extend([1 - x for x in sims])
 mol_clusters = Butina.ClusterData(dists, nfps, cutoff,
 isDistData=True)
 cluster_id_list = [0] * nfps
 for idx, cluster in enumerate(mol_clusters, 1):
 for member in cluster:
 cluster_id_list[member] = idx
 return cluster_id_list

Before clustering, we will create a new dataframe with only the 100 top-scoring mole‐
cules. Since combo_df is already sorted, we only have to use the head function to
select the first 100 rows in the dataframe:

best_100_df = combo_df.head(100).copy()

We can then create a new column containing the cluster identifier for each com‐
pound:

best_100_df["Cluster"] = butina_cluster(best_100_df.Mol)
best_100_df.head()

As always, it’s good to take a look and make sure everything worked. We now see that
in addition to the SMILES string, molecule name, and predicted values, we also have
a cluster identifier (see Figure 11-14).

200 | Chapter 11: A Virtual Screening Workflow Example

Figure 11-14. The first few rows of the clustered dataset.

We can use the Pandas unique function to determine that we have 55 unique clusters:

len(best_100_df.Cluster.unique())

Ultimately, we would like to purchase these compounds and screen them experimen‐
tally. In order to do this, we need to save a CSV file listing the molecules we plan to
purchase. The drop_duplicates function can be used to select one molecule per clus‐
ter. By default, the function starts from the top of the table and removes rows with
values that have already been seen:

best_cluster_rep_df = best_100_df.drop_duplicates("Cluster")

Just to make sure that this operation worked, let’s use the shape parameter to get the
number of rows and columns in the new dataframe:

best_cluster_rep_df.shape

Finally, we can write out a CSV file with the molecules we want to screen:

best_cluster_rep_df.to_CSV("best_cluster_represenatives.CSV")

Applying a Predictive Model | 201

Conclusion
At this point, we have followed all the steps of a ligand-based virtual screening work‐
flow. We used deep learning to build a classification model that was capable of distin‐
guishing active from inactive molecules. The process began with evaluating our
training data and ensuring that the molecular weight, LogP, and charge distributions
were balanced between the active and decoy sets. Once we’d made the necessary
adjustments to the chemical structures of the decoy molecules, we were ready to build
a model.

The first step in building the model was generating a set of chemical features for the
molecules being used. We used the DeepChem GraphConv featurizer to generate a set
of appropriate chemical features. These features were then used to build a graph con‐
volution model, which was subsequently used to predict the activity of a set of com‐
mercially available molecules. In order to avoid molecules that could be problematic
in biological assays, we used a set of computational rules encoded as SMARTS pat‐
terns to identify molecules containing chemical functionality previously known to
interfere with assays or create subsequent liabilities.

With our list of desired molecules in hand, we are in a position to test these molecules
in biological assays. Typically the next step in our workflow would be to obtain sam‐
ples of the chemical compounds for testing. If the molecules came from a corporate
compound collection, a robotic system would collect the samples and prepare them
for testing. If the molecules were purchased from commercial sources, additional
weighing and dilution with buffered water or another solvent would be necessary.

Once the samples are prepared, they are tested in biological assays. These assays can
cover a wide range of endpoints, ranging from inhibiting bacterial growth to prevent‐
ing the proliferation of cancer cells. While the testing of these molecules is the final
step in our virtual screening exercise, it is far from the end of the road for a drug dis‐
covery project. Once we have run the initial biological assay on the molecules we
identified through virtual screening, we analyze the results of the screen. If we find
experimentally active molecules, we will typically identify and test other similar mole‐
cules that will enable us to understand the relationships between different parts of the
molecule and the biological activity that we are measuring. This optimization process
often involves the synthesis and testing of hundreds or even thousands of molecules
to identify those with the desired combination of safety and biological activity.

202 | Chapter 11: A Virtual Screening Workflow Example

CHAPTER 12

Prospects and Perspectives

The life sciences are advancing at a remarkable rate, perhaps faster than any other
branch of science. The same can be said of deep learning: it is one of the most excit‐
ing, rapidly advancing areas of computer science. The combination of the two has the
potential to change the world in dramatic, far-reaching ways. The effects are already
starting to be felt, but those are trivial compared to what will likely happen over the
next few decades. The union of deep learning with biology can do enormous good,
but also great harm.

In this final chapter we will set aside the mechanics of training deep models and take
a broader view of the future of the field. Where does it have the greatest potential to
solve important problems in the coming years? What obstacles must be overcome for
that to happen? And what risks associated with this work must we strive to avoid?

Medical Diagnosis
Diagnosing disease will likely be one of the first places where deep learning makes its
mark. In just the last few years, models have been published that match or exceed the
accuracy of expert humans at diagnosing many important diseases. Examples include
pneumonia, skin cancer, diabetic retinopathy, age-related macular degeneration,
heart arrhythmia, breast cancer, and more. That list is expected to grow very rapidly.

Many of these models are based on image data: X-rays, MRIs, microscope images, etc.
This makes sense. Deep learning’s first great successes were in the field of computer
vision, and years of research have produced sophisticated architectures for analyzing
image data. Applying those architectures to medical images is obvious low-hanging
fruit. But not all of the applications are image-based. Any data that can be represented
in numeric form is a valid input for deep models: electrocardiograms, blood chemis‐
try panels, DNA sequences, gene expression profiles, vital signs, and much more.

203

In many cases, the biggest challenge will be creating the datasets, not designing the
architectures. Training a deep model requires lots of consistent, cleanly labeled data.
If you want to diagnose cancer from microscope images, you need lots of images
from patients both with and without cancer, labeled to indicate which are which. If
you want to diagnose it from gene expression, you need lots of labeled gene expres‐
sion profiles. The same is true for every disease you hope to diagnose, for every type
of data you hope to diagnose it from.

Currently, many of those datasets don’t exist. And even when appropriate datasets do
exist, they are often smaller than we would like. The data may be noisy, collected
from many sources with systematic differences between them. Many of the labels may
be inaccurate. The data may only exist in a human-readable form, not one that is
easily machine-readable: for example, free-form text written by doctors into patients’
medical records.

Progress in using deep learning for medical diagnosis will depend on creating better
datasets. In some cases, that will mean assembling and curating existing data. In other
cases, it will mean collecting new data that is designed from the start to be suitable for
machine learning. The latter approach will often produce better results, but it also is
much more expensive.

Unfortunately, creating those datasets could easily be disastrous for patient privacy.
Medical records contain some of our most sensitive, most intimate information. If
you were diagnosed with a disease, would you want your employer to know? Your
neighbors? Your credit card company? What about advertisers who would see it as an
opportunity to sell you health-related products?

Privacy concerns are especially acute for genome sequences, because they have a
unique property: they are shared between relatives. Your parent, your child, your sib‐
ling each share 50% of your DNA. It is impossible to give away one person’s sequence
without also giving away lots of information about all their relatives. It is also impos‐
sible to anonymize this data. Your DNA sequence identifies you far more precisely
than your name or your fingerprint. Figuring out how to get the benefits of genetic
data without destroying privacy will be a huge challenge.

Consider the factors that make data most useful for machine learning. First, of
course, there should be lots of it. You want as much data as you can get. It should be
clean, detailed, and precisely labeled. It should also be easily available. Lots of
researchers will want to use it for training lots of models. And it should be easy to
cross reference against other datasets so you can combine lots of data together. If
DNA sequences and gene expression profiles and medical history are each individu‐
ally useful, think how much more you can do when you have all of them for the same
patient!

204 | Chapter 12: Prospects and Perspectives

Now consider the factors that make data most prone to abuse. We don’t need to list
them, because we just did. The factors that make data useful are exactly the same as
the ones that make it easy to abuse. Balancing these two concerns will be a major
challenge in the coming years.

Personalized Medicine
The next step beyond diagnosing an illness is deciding how to treat it. Traditionally
this has been done in a “one size fits all” manner: a drug is recommended for a dis‐
ease if it helps some reasonable fraction of patients with that diagnosis while not pro‐
ducing too many side effects. Your doctor might first ask if you have any known
allergies, but that is about the limit of personalization.

This ignores all the complexities of biology. Every person is unique. A drug might be
effective in some people, but not in others. It might produce severe side effects in
some people, but not in others. Some people might have enzymes that break the drug
down very quickly, and thus require a large dose, while others might need a much
smaller dose.

Diagnoses are only very rough descriptions. When a doctor declares that a patient has
diabetes or cancer, that can mean many different things. In fact, every cancer is
unique, a different person’s cells with a different set of mutations that have caused
them to become cancerous. A treatment that works for one might not work for
another.

Personalized medicine is an attempt to go beyond this. It tries to take into account
every patient’s unique genetics and biochemistry to select the best treatment for that
particular person, the one that will produce the greatest benefit with the fewest side
effects. In principle, this could lead to a dramatic improvement in the quality of
healthcare.

If personalized medicine achieves its potential, computers will play a central role. It
requires analyzing huge volumes of data, far more than a human could process, to
predict how each possible treatment will interact with a patient’s unique biology and
disease condition. Deep learning excels at that kind of problem.

As we discussed in Chapter 10, interpretability and explainability are critical for this
application. When the computer outputs a diagnosis and recommends a treatment,
the doctor needs a way to double check those results and decide whether or not to
trust them. The model must explain why it arrived at its conclusion, presenting the
evidence in a way the doctor can understand and verify.

Unfortunately, the volumes of data involved and the complexity of biological systems
will eventually overwhelm the ability of any human to understand the explanations. If
a model “explains” that a patient’s unique combination of mutations to 17 genes will

Personalized Medicine | 205

make a particular treatment effective for them, no doctor can realistically be expected
to double-check that. This creates practical, legal, and ethical issues that will need to
be addressed. When is it right for a doctor to prescribe a treatment without under‐
standing why it’s recommended? When is it right for them to ignore the computer’s
recommendation and prescribe something else? In either case, who is responsible if
the prescribed treatment doesn’t work or has life-threatening side effects?

The field is likely to develop through a series of stages. At first, computers will only be
assistants to doctors, helping them to better understand the data. Eventually the com‐
puters will become so much better than humans at selecting treatments that it would
be totally unethical for any doctor to contradict them. But that will take a long time,
and there will be a long transition period. During that transition, doctors will often be
tempted to trust computer models that perhaps shouldn’t be trusted, and to rely on
their recommendations more than is justified. As a person creating those models, you
have a responsibility to consider carefully how they will be used. Think critically
about what results should be given, and how those results should be presented to
minimize the chance of someone misunderstanding them or putting too much
weight on an unreliable result.

Pharmaceutical Development
The process of developing a new drug is hugely long and complicated. Deep learning
can assist at many points in the process, some of which we have already discussed in
this book.

It is also a hugely expensive process. A recent study estimated that pharmaceutical
companies spend an average of $2.6 billion on research and development for every
drug that gets approved. That doesn’t mean it costs billions of dollars to develop a
single drug, of course. It means that most drug candidates fail. For every drug that
gets approved, the company spent money investigating lots of others before ulti‐
mately abandoning them.

It would be nice to say that deep learning is about to sweep in and fix all the prob‐
lems, but that seems unlikely. Pharmaceutical development is simply too complicated.
When a drug enters your body, it comes into contact with a hundred thousand other
molecules. You need it to interact with the right one in just the right way to have the
desired effect, while not interacting with any other molecule to produce toxicity or
other unwanted side effects. It also needs to be sufficiently soluble to get into the
blood, and in some cases must cross the blood–brain barrier. Then consider that once
in the body, many drugs undergo chemical reactions that change them in various
ways. You must consider not just the effects of the original drug, but also the effects of
all products produced from it! Finally, add in requirements that it must be inexpen‐
sive to produce, have a long shelf life, be easy to administer, and so on.

206 | Chapter 12: Prospects and Perspectives

Drug development is very, very hard. There are so many things to optimize for all at
once. A deep learning model might help with one of them, but each one represents
only a tiny part of the process.

On the other hand, you can look at this in a different way. The incredible cost of drug
development means that even small improvements can have a large impact. Consider
that 5% of $2.6 billion is $130 million. If deep learning can lower the cost of drug
development by 5%, that will quickly add up to billions of dollars saved.

The drug development process can be thought of as a funnel, as shown in
Figure 12-1. The earliest stages might involve screening tens or hundreds of thou‐
sands of compounds for desired properties. Although the number of compounds is
huge, the cost of each assay is tiny. A few hundred of the most promising compounds
might be selected for the much more expensive preclinical studies involving animals
or cultured cells. Of those, perhaps 10 or fewer might advance to clinical trials on
humans. And of those, if we are lucky, one might eventually reach the market as an
approved drug. At each stage the number of candidate compounds shrinks, but the
cost of each experiment grows more quickly, so most of the expense is in the later
stages.

Figure 12-1. The drug development funnel.

A good strategy for reducing the cost of drug development can therefore be summar‐
ized as: “Fail sooner.” If a compound will ultimately be rejected, try to filter it out in
the early stages of the development process before hundreds of millions of dollars
have been spent on clinical trials. Deep learning has great potential to help with this
problem. If it can more accurately predict which compounds will ultimately become
successful drugs, the cost savings will be enormous.

Pharmaceutical Development | 207

1 Yamins, Daniel L. K. et al. “Performance-Optimized Hierarchical Models Predict Neural Responses in Higher
Visual Cortex.” Proceedings of the National Academy of Sciences 111:8619–8624. https://doi.org/10.1073/pnas.
1403112111. 2014.

2 Kell, Alexander J. E. et al. “A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts
Brain Responses, and Reveals a Cortical Processing Hierarchy.” Neuron 98:630–644. https://doi.org/10.1016/
j.neuron.2018.03.044. 2018.

Biology Research
In addition to its medical applications, deep learning has great potential to assist basic
research. Modern experimental techniques tend to be high-throughput: they produce
lots of data, thousands or millions of numbers at a time. Making sense of that data is a
huge challenge. Deep learning is a powerful tool for analyzing experimental data and
identifying patterns in it. We have seen some examples of this, such as with genomic
data and microscope images.

Another interesting possibility is that neural networks can directly serve as models of
biological systems. The most prominent application of this idea is to neurobiology.
After all, “neural networks” were directly inspired by neural circuits in the brain.
How far does the similarity go? If you train a neural network to perform a task, does
it do it in the same way that the brain performs the task?

At least in some cases, the answer turns out to be yes! This has been demonstrated for
a few different brain functions, including processing visual,1 auditory,2 and move‐
ment sensations. In each case, a neural network was trained to perform a task. It was
then compared to the corresponding brain region and found to match its behavior
well. For example, particular layers in the network could be used to accurately predict
the behavior of specific areas in the visual or auditory cortex.

This is rather remarkable. The models were not “designed” to match any particular
brain region. In each case, the researchers simply created a generic model and trained
it with gradient descent optimization to perform some function—and the solution
found by the optimizer turned out to be essentially the same as the one discovered by
millions of years of evolution. In fact, the neural network turned out to more closely
match the brain system than other models that had been specifically designed to rep‐
resent it!

To push this approach further, we will probably need to develop entirely new archi‐
tectures. Convolutional networks were directly inspired by the visual cortex, so it
makes sense that a CNN can serve as a model of it. But presumably there are other
brain regions that work in very different ways. Perhaps this will lead to a steady back
and forth between neuroscience and deep learning: discoveries about the brain will
suggest useful new architectures for deep learning, and those architectures in turn
can serve as models for better understanding the brain.

208 | Chapter 12: Prospects and Perspectives

https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1016/j.neuron.2018.03.044
https://doi.org/10.1016/j.neuron.2018.03.044

And of course, there are other complicated systems in biology. What about the
immune system? Or gene regulation? Each of these can be viewed as a “network,”
with a huge number of parts sending information back and forth to each other. Can
deep models be used to represent these systems and better understand how they
work? At present, it is still an open question.

Conclusion
Deep learning is a powerful and rapidly advancing tool. If you work in the life scien‐
ces, you need to be aware of it, because it’s going to transform your field.

Equally, if you work in deep learning, the life sciences are an incredibly important
domain that deserves your attention. They offer the combination of huge datasets,
complex systems that traditional techniques struggle to describe, and problems that
directly impact human welfare in important ways.

Whichever side you come from, we hope this book has given you the necessary back‐
ground to start making important contributions in applying deep learning to the life
sciences. We are at a remarkable moment in history when a set of new technologies is
coming together to change the world. We are all privileged to be part of that process.

Conclusion | 209

Index

Symbols
2D3U protein-ligand complex, 75

visualization of, 76
3D protein snapshots (see proteins, structures)

A
activation functions, 10

choices of, 11
active and decoy molecules, 180

calculated properties of, 180-186
Adam algorithm, 14
addiction, digital, 143
adenine (A), 86
Alzheimer's disease progression, classification

with deep learning, 140
amino acids, 63, 86

common, chemical structures, 63
residue, 76

angstroms, 75
antibacterial agents for gram-negative bacteria,

113
antibody-antigen interactions, 82

modeling antigen-antibody binding, 82
area under the curve, 31

(see also ROC AUC scores)
aromatic rings, 70

detection with DeepChem RdkitGridFeatur‐
izer, 72

pi-stacking interactions, 71
artifacts of sample preparation, 117
AspuruGuzikAutoEncoder class (DeepChem),

157
atomic featurization, 73
atomic force microscopy (AFM), 110

atoms in molecules
chemical bonds connecting, 42
conversion to nodes in molecular graphs, 46

autoencoders
defined, 151
variational, 152-153

B
bacteria

automated systems for separating gram-
negative and gram-positive, 121

gram-negative, developing antibacterial
agents for, 113

gram-positive and gram-negative, 112
gram-positive, mesosome in, 117

BalancingTransformer class (DeepChem), 29
baseline models, 79
bases (DNA), 86

complementary, 96
one-hot encoding in convolutional model

for TF binding, 91
batches (of samples), 14

Python function iterating over, 95
Bayesian networks

failure to win broad adoption, 132
probabilistic diagnoses with, 131

BBBC bioimage datasets, 119
biases, 8
binding affinities of biomolecular complexes,

73
binding site motif, 90
biological targets, binding of molecules with, 27
biology

knowledge of, 27

211

prospects of deep learning in research, 208
biophysical machine learning, 59-83

featurizations, 67-73
atomic featurization, 73
grid featurization, 68-73

PDBBind case study, 73-81
featurizing the PDBBind dataset, 77-81

protein structures, 61-67
computational prediction of, 65
primer on protein binding, 66
protein sequences, 63

biophysics, 4
reason for the name, 60

boxplots, 182
comparing charge distributions of active

and neutralized decoy molecules, 184
comparing predicted values for active and

inactive molecules, 189
brain functions, neural networks performing,

208
brain, powerful effects of modern software on,

143
Butina clustering, 199

C
cats, 18
cell counting, 118-121

implementing in DeepChem, 119-121
cell lines, 118

from Henrietta Lacks cancer (HeLa), 148
cell segmentation, 121-126

generation of segmentation masks, 123, 123
implementing in DeepChem, 123-126
segmentation masks, 122

CellProfiler, 102
cells, visualization of nuclei and cytoskeletons,

101
chaperones, 89
chemical bonds, 42, 44-46

conversion to edges in molecular graphs, 46
covalent, 44
noncovalent, 45

chemical fingerprints, 199
chemical informatics (cheminformatics), 3
chemical valence, generated molecules obeying,

161
chirality of molecules, 48
chromatin, 93
chromatin accessibility, 93-96

chromosomes, 87
classification models, 53

convolutional model for TF binding, 98
clinical trials, 141, 180, 207
clustering molecules, 195, 199
CNNs (see convolutional neural networks)
code repository for this book, 75
codons, 86
complementary bases, 96
computational assays in microscopy, 126
computational prediction of protein structure,

65
prediction of structures for protein-ligand

complexes, 75
computer-aided diagnostics (in medicine),

129-131, 203-205
confocal microscopes, 104
conformations (molecular), 47-48

graph convolutional networks and, 52
conseqences of deep model predictions, 176
convolutional kernel, 19
convolutional layers, 19
convolutional neural networks (CNNs), 18, 208

convolutional architeture for scans in radi‐
ology, 136

for cell counting deep learning application,
120

for diabetic retinopathy images, 146
for image recognition, 51
for TF binding, 91-93
training on MNIST digit recognition data‐

set, 33-39
use with CT scans to classify progression of

Alzheimers, 140
correlation coefficients, 53
covalent bonds, 44

pi-bonds, 71
restricting possible molecular conforma‐

tions, 47
CPUs, difficulty in handling deep learning

workloads, 39
cross entropy of probabilities, 38, 92
cryo-electron microscopy (cryo-EM, 62
CSV files

for active and decoy molecule information,
185

Pandas read_CSV function, 180
CT (computed tomography) scans, 138-141

deep learning for signal processing, 142

212 | Index

cytosine (C), 86

D
data, importance in contemporary life sciences,

2
databases in life sciences, 3
datasets

BBBC bioimage datasets, 119
DeepChem Dataset objects, 24
featurization, 26

(see also featurization)
preparing for model prediction in virtual

screening example, 191-194
preparing for predictive modeling in virtual

screening, 180
processing and cleaning, challenges of, 29
processing image datasets, 120
training sets, 13
training, validation, and test datasets used in

DeepChem for molecule toxicity predic‐
tion, 28

use in life sciences, 3
“Daylight Theory Manual”, 57
dc.models.Model class, 30
dc.molnet module, 28
de Broglie wavelength, 108
decision tree classifiers, 79
decoder/encoder, 152
decoy molecules (see active and decoy mole‐

cules)
deep learning

advances through application of, 2
background, resources for further reading,

21
development of antibiotics for gram-

negative bacteria, 113
for genomics, 85-99

chromatin accessibility, 93-96
RNA interference, 96-99
transcription factor binding, 90-93
unique suitability of deep learning, 89

for medicine, 129-149
applications in radiology, 136-143
computer-aided diagnostics, 129-131
deep networks vs. expert systems and

Bayesian networks, 132
diagnosing diaetic retinopathy progres‐

sion, 144-147

electronic health record (EHR) data,
132-136

ethical considerations, 147
job losses and, 148
learning models as therapeutics, 143
probabilistic diagnosis with Bayesian

networks, 131
introduction to, 7-21

hyperparameter optimization, 17
linear models, 8-10
mathematical function for most prob‐

lems, 7
models, other types of, 18-20
multilayer perceptrons, 10-12
regularization, 15
training models, 13-14
validation, 15

new ways of planning synthesis of drug-like
molecules, 162

overcoming the diffraction limit, 112
prospects and perspectives, 203-209

in biology research, 208
in medical diagnosis, 203-205
in pharmaceutical development, 206-207

super-resolution techniques, 111
deep models, 12

vs. shallow models, 12
deep neural networks, 1
DeepChem, 4, 23-39

applications other than life sciences, 34
atomic featurizer, 73
case study using, 6
convolutional neural networks (CNNs), 52
Dataset objects, 24
diabetic retinopathy model, explaining pre‐

dictions of, 166-169
featurizing a molecule, 49-51

SMILES strings and RDKit, 49
implementing cell counting in, 119-121
implementing cell segmentation in, 123-126
implementing diabetic retinopathy convolu‐

tional network in, 145
implementing VAE model to generate new

molecules, 157
MultitaskRegressor model, 78
operating systems supporting, 24
RdkitGridFeaturizer, 68

building for PDBBind featurization, 77
implementation details, 72

Index | 213

reasons for using, 23
training a model to predict toxicity of mole‐

cules, 25-32
training an MNIST model, case study, 32-39

convolutional architecture for MNIST,
34-39

MNIST digit recognition dataset, 33
using MLP with grid featurization to predict

protein-ligand binding, alternatives to,
80

DeepPatient, 134
dense layers (see fully connected layers)
descriptors (molecular), 51
deterministic super-resolution microscopy, 111
developers, understanding of sample prepara‐

tion for microscopy, 113
diabetic retinopathy, 144-147

explaining predictions made by model,
using saliency mapping, 166-169

high-resolution images, dealing with, 145
implementing convolution network for, in

DeepChem, 145
obtaining the Kaggle diabetic retinopathy

dataset, 145
diffraction limit, 107-112

breaking through, using super-resolution
microscopy, 110

bypassing using electron and atomic force
microscopy, 108

deep learning and, 112
digital addiction, 143
discriminative models, 5
discriminator (GANs), 153
DNA, 85

accessibility of, 93
DNA, RNA, and proteins, 85-87
in genetics vs. genomics, 85
interactions between RNA and, 5
real-world description of how it works,

87-89
dropout, 16, 52, 78, 91, 93, 98, 173, 175
drug discovery

coming up with new compounds, 155
developing antibiotics for gram-negative

bacteria, 113
estimation of drug-likeness in QED scores,

160
machine learning in, 5

new deep learning methods of planning
synthesis of drug-like molecules, 162

using virtual screening, 6
virtual screening workflow example,

179-202
drugs

binding to proteins, 59
development of, prospects for deep learn‐

ing, 206-207
recommendations in personalized medicine,

205
DUD-E database, 180
dynamics, importance in protein physics, 74, 82

E
ECFP4 algorithm, 50
ECFPs (see extended-connectivity fingerprints)
edges (in graphs), 46
electron microscopy, 108

components of modern transmission elec‐
tron microscope, 108

stunning images of microscopic systems,
109

electronic health record (EHR) systems,
132-136
dangers of large patient EHR databases, 135
ICD-10 codes and, 133
not really helpful to doctors, 136
transformation of EHR data to FHIR for‐

mat, 134
unsupervised learning techniques with EHR

data, 134
encoder/decoder, 152
enzymatic assays, 27
epistemic uncertainty, 175
epochs, 30
ERK2 protein, molecules inhibiting, 180
errors

actual error in predictions vs. model's
uncertainty estimates, 175

multiple factors leading to in model predic‐
tions, 173

root-mean-squared (RMS), 173
ethical considerations for deep learning in

medicine, 147
Euclidean distance, 13
eukaryotes, 87
evaluation function (model.evaluate) in Deep‐

Chem, 31

214 | Index

exons, 88
experimental data, generation in life sciences, 2
expert systems, 129

failure to win broad adoption, 132
limitations of, 130

explainability, 176, 205
ExponentialDecay (DeepChem), 157
extended-connectivity fingerprints (ECFPs), 50

in grid featuriation, 72

F
Fast Healthcare Interoperability Resources

(FIHR) specification, 134
featurization, 26

biophysical, 67-73
atomic featurization, 73
grid featurization, 68-73

featurizing a molecule, 49-51
extended-connectivity fingerprints

(ECFPs), 50
learning from the data, 51
molecular descriptors, 51

featurizing molecules, 195
featurizing the PDBBind dataset, 77-81

building RdkitGridFeaturizer, 77
GraphConv DeepChem featurizer, 202
molecular, 41
using DeepChem to convert SMILES strings

to graph convolution, 53
filters for interfering molecules in biological

assays, 191
fixation of biological samples for microscopy,

113
fixative agents, 114
fluorescence microscopy, 115-117

deep learning and, 126
fluorescent tagging, 116
fluorophores, 115

fully connected layers, 19, 30, 34, 37, 120
functional super-resolution microscopy, 111
functions

basic function for many deep learning prob‐
lems, 7

design in machine learning, 8
in multilayer perceptrons, 10

universal approximator, 12
fundus images, 144

G
GANs (see generative adversarial networks)
gated recurrent unit (GRU), 20
generative adversarial networks (GANs),

153-154
adversarial aspect, 154
evolution of, 156
structure of, 153
vs. VAEs, 154

generative models, 6, 151-163
applications in life sciences, 154-156

future of generative modeling, 156
protein design, 155
tool for scientific discovery, 156

generating new ideas for lead compounds,
155

generating new molecules, key issues with,
161

generative adversarial networks (GANs),
153-154

variational autoencoders, 151-153
working with, 157

analyzing output, 158
generator (in GANs), 153
genes, 87

disabling, using RNA interference, 97
splice variants, 88

genetics, 4
vs. genomics, 85

genome, 85
genomics, 5, 85-99

chromatin accessibility, 93-96
deep learning for

optimizing inputs for TF binding model,
170-172

DNA, RNA, and proteins, 85-87
how genomes really work, 87-89
privacy concerns for datasets, 204
RNA interference, 96-99
transcription factor binding, 90-93
vs. genetics, 85

geometric configurations, protein bonding and,
72

GPUs
advantages for running deep learning work‐

loads, 39
high-resolution images and, 145
processing cell counting DeepChem dataset,

121

Index | 215

gradient descent algorithm, 13
graph convolutional networks, 51
graph convolutions, 51

converting SMILES strings to, using Deep‐
Chem featurizer, 52

graphs (molecular), 46, 52
grid featurization, 68-73

building RdkitGridFeaturizer for PDBBind,
77

DeepChem and RdkitGridFeaturizer, 68
fingerprints, 72
hydrogen bonds, 69
implementation details for DeepChem

RDkitGridFeaturizer, 72
pi-stacking interactions, 70
salt bridges, 70
using MLP with to model protein-ligand

structures in DeepChem, 80
GRU (gated recurrent unit), 20
guanine (G), 86

H
health record data (electronic), 132-136
hemiacetals, 162
hidden layers (in MLPs), 10
high-resolution images, 145
Hinton Geoffrey, 137
histology, 141
histones, 87
homologs, 65
homology modeling, 65
human-level accuracy claims for medical deep

learning systems, 141
hydrogen bonds, 45, 69

detection with DeepChem RdkitGridFeatur‐
izer, 72

in salt bridges, 70
hyperbolic tangent, 11
hyperparameter optimization, 17
hyperparameters, 4, 17

I
ICD-10 codes, 133
ImageLoader class (DeepChem), 119
images

automated, high-throuhput analysis of
microscopy images, 102

BBBC bioimage datasets, 119

brittleness of visual convolutional models,
127

convolutional architectures for image tasks,
136

CT and MRI scans, reconstructing images
using deep networks, 142

developments in image recognition from
deep learning, 2

fundus, predicting diabetic retinopathy pro‐
gression from, 144

generative modeling and, 156
high-resolution, dealing with, 145
image segmentation datasets, handling in

DeepChem, 123
medical, analysis using deep learning, 5
processing image datasets, 120

immersion fixation, 114
inference techniques in expert systems, 130
inputs, optimizing for deep models, 169-172
interpretability, 165
interpretation of deep models, 165-177

explaining predictions, 165-169
interpretability and explainability in person‐

alized medicine, 205
interpretability, explainability, and real-

world consequences, 176
optimizing inputs, 169-172

ionic bonding
in salt bridges, 70

ionization, 42

J
job loss considerations for deep learning in

medicine, 148
JUND transcription factor, convolutional

model for binding, 90-93
Jupyter notebooks, NGLview with, 76

K
Kaggle diabetic retinopathy dataset, 144
Keras, 23

L
Lacks, Henrietta, 148
language translation, developments from deep

learning, 2
latent space (of autoencoders), 152
learning rate, 14

216 | Index

left-handed form (S form) of chiral molecules,
48

life sciences
contemporary, reliance on data, 2
importance of biomedical research, 1

ligand-based virtual screening, 179
(see also virtual screening, workflow exam‐

ple)
ligands, 60

ligand-protein interactions, pi-stacking
interactions in, 71

nucleic acid-ligand complex structures in
PDBBind, 74

protein-ligand complexes in PDBBind, 74
light, wavelengths of, 107
linear models, 8-10
linear transforms, staking in MLPs, 10
Linux, DeepChem support, 24
logistic sigmoid, 11, 92
logit function, 92
long short-term memory (LSTM), 20
loss function (for training sets), 13
LSTM (long short-term memory), 20
L₂ distance, 13

M
machine learning

defined, 3
for microscopy, 101, 118-126

cell counting, 118-121
cell segmentation, 121-126
computational assays, 126
deep learning and the diffraction limit,

112
deep learning super-resolution techni‐

ques, 111
limitations of, 106

for molecules, 41-57
graph convolutions, 51
MoleculeNet, 54-57
overview of molecular chemistry and

structure, 41-49
training a model to predict solubility,

52-54
impact of, 1
with DeepChem, 23-39

Macintosh, support for DeepChem, 24
magnetic resonance imaging (see MRI)

mammography, strong classification accuracy
on, 140

mass spectroscopy, 42
schematic of a mass spectrometer, 42

matrices, 8
Matthews correlation coefficient, 187
medicine, deep learning for, 5, 129-149

computer-aided diagnostics, 129-131
diabetic retinopathy, 144-147
electronic health record (EHR) data,

132-136
dangers of large patient EHr databases,

135
EHRs not really helpful to doctors, 136
FHIR format and, 134
ICD-10 codes, 133
unsupervised learning with, 134

ethical considerations, 147
human-level accuracy claims, 141
job losses and, 148
learning models as therapeutics, 143
probabilistic diagnosis with Bayesian net‐

works, 131
prospects and perspectives

personalized medicine, 205
prospects and perspetives in medical diag‐

nosis, 203-205
radiology, 136-143

histology, 141
MRI scans, 142
questions about what deep model learn,

138
X-ray and CT scans, 138-141

mesosomes, 117
messenger RNA (mRNA), 86

RNA interference, 96
translation to proteins, 88

metamaterials with negative refraction index,
112

methylation, 87
metrics, 38, 132

evaluating how well a model works, 31
for evaluating diabetic retinopathy models,

146
human-level accuracy and, 141
Matthews correlation coefficient, 187
Pearson correlation coefficient, 53
Pearson R² score, 79
QED metric for molecules, 160

Index | 217

ROC AUC scores, 31, 92
Tanimoto coefficient, 199

microRNAs (miRNAs), 88
microscopy, 5, 101-127

deep learning applications, 118-126
cell counting, 118, 121
cell segmentation, 121-126
computational assays, 126

diffraction limit, 107-112
bypassing using electron and atomic

force microscopy, 108
deep learning and, 112
super-resolution microscopy, 110

introduction to, 103-106
modern optical microscopy, 104

machine learning for
automated high-throughput image anal‐

ysis, 102
limitations of deep learning, 106

preparing biological samples for, 112-118
artifacts form sample preparation, 117
fluorescence microscopy, 115-117
reasons for developers to understand,

113
sample fixation, 113
sectioning samples, 114
staining, 112
tracking provenance of samples, 118

microtome, 114
Minsky, Marvin, 104
miRNAs (micro RNAs), 88
mitogen-activated protein kinase 1 (MAPK1),

180
MLPs (see multilayer perceptrons)
MNIST digit recognition dataset, training a

model on, 32-39
models, 18-20

baseline, 79
brittleness of visual convolutional models,

127
canned models, use of, 33
convolutional neural networks (CNNs), 18
deep learning, difficulty in interpretation of,

6
DeepChem life science-specific models, 30
defining a class of functions, 8
discriminatave and generative, 5
generative, 151-163

applications in life sciences, 154-156

generative adversarial networks, 153-154
variational autoencoders, 151-153
working with, 157

interpretability of, 138
interpretation of deep models, 165-177

explaining predictions, 165-169
interpretability, explainability, and real-

world consequences, 176
optimizing inputs, 169-172

linear, 8-10
recurrent neural networks (RNNs), 19
training, 13-14

molecular featurizations, 41
MoleculeNet, 54-57

grid featurizer for PDBBind dataset, 78
MUV dataset, 157
SMARTS strings, 54
Tox21 dataset, 26

molecules
application of machine learning to, 4
generating new, using generative models,

161
generating new, using VAE, 157

examining SMILES strings representing,
159

generative model of molecular structures,
155

machine learning on molecular data, 49-57
featurizing a molecule, 49-51
graph convolutions, 51
MoleculeNet, 54-57
solubility model, uncertainty of predic‐

tions, 173-176
training a model to predict solubility,

52-54
overview of, 42-49

chirality, 48
dynamic, quantum entities, 44
identifying molecules with mass spectro‐

scopy, 42
molecular bonds, 44-46
molecular conformations, 47-48
molecular graphs, 46

representation in basic function, 7
training model to predict toxicity of, using

DeepChem, 25-32
MRI scans, 142

deep learning for signal processing, 142
mRNA (see messenger RNA)

218 | Index

multilayer perceptrons (MLPs), 10-12
using with grid featurizer in DeepChem to

predict protein-ligand binding, 78
MultitaskClassifier DeepChem model, 30

fitting, 30
MYCIN expert system, 130

N
near-field microscopy, 111
neural networks, 18, 208

(see also convolutional neural networks)
building for predicting protein-ligand bind‐

ing, 78
true vs. predicted labels when run on test

set, 80
multilayer preceptrons and variants, 11
recurrent neural networks (RNNs), 19

NGLView (protein visualizer), 76
NMR (see nuclear magnetic resonance)
nodes (in graphs), 46
noncovalent bonds, 45
nonlinearities (in MLPs), 10
nuclear magnetic resonance (NMR), 61
nucleic acids, 74
NumPy arrays, 72, 120
NumpyDataset object, 24

O
one-hot encoding, 36

in convolutional model for TF binding, 91
operating systems, support for DeepChem, 24
optical microscopes, 103

modern, 104
simple or compound, 104

optical sectioning, 104
optimization algorithms in deep learning, 14
overfitting, 15, 53, 78, 80, 98

avoiding, using regularization, 15-17
CNNs vs. MLPs, 19
hyperparameter optimization and, 17
preventing in convolutional model for TF

binding, 92

P
Pandas dataframes, 180

adding calculated properties of active and
decoy molecules to, 181

appending active and decoy dataframes
together, 181

creating new dataframe for SMILES strings,
IDs, and labels for decoy molecules, 184

examining active_df dataframe, 181
examining decoy_df dataframe, 181
shape property returning number of rows

and columns, 184
parameters

for functions defined by a model, 8
hyperparameter optimization, 17
restricting magnitude in training models, 16

PDB (see Protein Data Bank)
PDBBind dataset, 60, 73-81

structures of biomolecular complexes, 74
Pearson correlation coefficient, 53

evolution during training for convolutional
TF binding model, 98

for convolutional model including RNA
interference, 98

Pearson R² score, 79
peptides, 63
perceptrons, 9

multilayer, 10-12
perfusion technique for sample fixation, 114
personalized medicine, 205
pharmaceutical development, 206-207
phototoxicity, 107

with electron microscopes, 109
physical modeling of protein structures, 65
pi-stacking interactions, 70
Planck's constant, 108
polypharmacology, 59
position weight matrix, 90
preclinical studies, 207
predictions

applying a predictive model in virtual
screening example, 195-202

interpetability, explainability, and real-world
consequences, 176

made by deep models, explaining, 165-169
predicting uncertainty, 172-176
preparing a dataset for model prediction in

virtual screening example, 191-194
preparing a dataset for predictive modeling

in virtual screening study, 180-186
training pedictive model in virtual screening

example, 186-191
predictive models, 4

Index | 219

privacy concerns
deep learning applied to medicine, 148
for deep learning datasets in medical diag‐

nosis, 204
probability

outputting probability distribution for
MNIST model training, 37
cross entropy of probabilities, 38

probabilistic medical diagnoses with Baye‐
sian networks, 131

Protein Data Bank (PDB), 62
PDB file for protein–ligand complex 2D3U,

75
PDB files and their pitfalls, 68

proteins
conformations, 47
design of, 155
DNA, RNA, and proteins, 85-87
drugs targeting, 59
interaction between drug molecules and, 5
PDBBind case study, 73-81
real-world description of how genomes

work, 87-89
structures, 61-65

computational prediction of, 65
primer on protein binding, 66
protein sequences, 63

visualization tools, 77
protein–DNA interactions, 81
protein–ligand structures, 60
protein–protein interactions, 81
Python

generator function to iterate over batches,
95

NumPy arrays, 120
NumpyDataset object, 24
rd_filters.py script, 191

PyTorch, 23

Q
QED metric for molecules, 160
quantum entities, molecules as, 44

R
R form (right-handed form) of chiral mole‐

cules, 48
racemic mixtures, 48
radiology, deep learning in, 136-143

histology, 141

human-level accuracy claims, 141
MRI scans, 142
other types of scans, 142
questions about what deep models really

learn, 138
X-ray and CT scans, 138-141

random forest model, 78
good choice for baseline model, 79
true vs. predicted labels when run on test

set, 80
RDKit, 49

calculating QED values for molecules, 160
computing ECFP4 fingerprints for mole‐

cules, 50
grid featurizer, 68, 72
parsing SMILES strings, 53, 158
physiochemical descriptors for molecules,

computing, 51
SMARTS string matches, 56

rd_filters.py script, 191
receiver operating characteristic, 31

(see also ROC AUC scores)
recommender systems, 2
rectified linear unit (ReLU), 11
recurrent neural networks (RNNs), 19
reference material, online, for this book, 145
regression models, 53, 98
regularization, 15-17
residue, 75
ResNet architecture, 136
resolution possible with microscopes, 107

(see also diffraction limit)
ribosomal RNA, 88
ribosomes, 88
riboswitches, 89
ribozymes, 88
RISC (RNA-induced silencing complex), 96
RMSProp algorithm, 14
RNA, 86

(see also DNA; genomics)
interactions with DNA, 5
many types of, 88
real-world description of how it works, 88
RNA interference, 96-99

RNA-induced silencing complex (RISC), 96
RNNs (recurrent neural networks), 19
ROC AUC scores, 31

calculating, 31
for convolutional model of TF binding, 92

220 | Index

for convolutional model of TF binding
including chromatin acessibility, 95

root-mean-squared (RMS) error, 173

S
S form (left-handed form) of chiral molecules,

48
saliency mapping, 166-169

JUND saliency, 170
salt bridges, 70
samples, 13
samples for microscopy, preparing (see mico‐

scopy)
scanning electron microscopes, 109
Scikit-learn package, 79
sectioning samples for microscopy, 114
segmentation masks, 122
shallow models, 12

vs. deep models, 12
short interfering RNA (siRNA), 88, 96, 97
sigmoid function, 92
signal processing, deep learning for, 142
Simplified Molecular-Input Line-Entry System

(see SMILES strings)
siRNA (see short interfering RNA)
SMARTS strings, 55, 202
SMILES strings, 49

converting to graph convolution with Deep‐
Chem featurizer, 53

decoding from latent space of generative
models, 162

generation by variational encoder, 157
output by generative model, analyzing, 158
representing molecules in virtual screening

example, 180
SMARTS strings as extension of, 55

softmax function, 37
SoftMaxCrossEntropy object (DeepChem), 38
software-driven therapeutics, 143
solubility (molecular), training a model to pre‐

dict, 52-54
spectroscopy (mass), 42
spectrum, 42
speech recognition

developments driven by deep learning, 2
splice variants, 88
splicing, 88
splitters for datasets, 187
staining of samples for microscopy, 112

fluorescent stain , 116
stimulated emission depletion (STED) micro‐

scopy, 111
stochastic gradient descent (SGD) algorithm,

14
stochastic super-resolution microscopy, 111
structure-based virtual screening, 179
structures, 60

determining structure of biomolecular com‐
plexes, difficulty of, 75

structure–activity relationships (SARs), 3
super-resolution microscopy, 110

deep learning techniques for, 111
near-field techniques, 111
techniques, 110

T
Tanimoto coefficient, 199
TensorFlow

tf.data dataset loading utilities, 25
with DeepChem, 23

test sets, 15
TFs (see transcription factors)
therapeutics, learning models as, 143
thymine (T), 86

replacement by uracil in DNA transcription
to RNA, 96

tissue development process, generative model
of, 156

toxicity of molecules, training a model to pre‐
dict, 25-32

training models, 13-14
cell counting convolutional model, 121
convolutional model including RNA inter‐

ference, 98
deep vs. shallow models, 12
DeepChem case study, training an MNIST

model, 32-39
predictive model in virtual screening exam‐

ple, 186-191
to predict molecular solubility, 52-54
to predict toxicity of molecules, using Deep‐

Chem, 25-32
training sets, 13
transcription factors (TFs), 87

convolutional model for TF binding
optimizing inputs, 170-172

predicting TF binding, 90-93
transfer RNAs (tRNAs), 88

Index | 221

transformers, 29
transmission electron microscopes, 109

U
U-Net architecture for image segmentation, 124

training a U-Net, 125
uncertainty, predicting, 172-176
universal approximator, 12
unsupervised learning

with EHR data, 134
uracil (U), 96

V
VAEs (see variational autoencoders)
validation, 15

validation set, 18
van Leeuwenhoek, Anton, 103
variational autoencoders (VAEs), 151-153

training to generate new molecules, 157
vs. GANs, 154

vectors, 7
biases in linear models, 8

VGG architecture, 136
videos, generative, 156
violin plots, 182-185
virtual screening, 6

workflow example, 179-202
applying a predictive model, 195-202
preparing a dataset for model prediction,

191-194
preparing a dataset for predictive model‐

ing, 180-186
training a predictive model, 186-191

visual cortex, 18
visualization tools for proteins, 77
visualizations

brittleness of convolutional visual models,
127

of cell nuclei and cytoskeletons, 101
voxelization, 77

W
wave-like properties of matter, 108
wavelengths of light, 107
weights, 8
Windows Subsystem for Linux (WSL), 24
Windows, DeepChem and, 24

X
X-ray crystallography, 61
X-rays, 138

222 | Index

About the Authors
Bharath Ramsundar is the cofounder and CTO of Datamined, a blockchain com‐
pany enabling the construction of large biological datasets. Datamined aims to gener‐
ate the datasets needed to accelerate the ongoing boom of AI in biotech. Bharath is
also the lead developer and creator of DeepChem.io, an open source package founded
on TensorFlow that aims to democratize the use of deep learning in drug discovery,
and the cocreator of the MoleculeNet benchmark suite.

Bharath received a BA and BS from UC Berkeley in EECS and mathematics and was
valedictorian of his graduating class in mathematics. He recently finished his PhD in
computer science at Stanford University (all but the dissertation) with the Pande
group, supported by a Hertz Fellowship, the most selective graduate fellowship in the
sciences.

Peter Eastman works in the bioengineering department at Stanford University devel‐
oping software for biologists and chemists. He is the lead author of OpenMM, a tool‐
kit for high-performance molecular dynamics simulation, and is a core developer of
DeepChem, a package for deep learning in chemistry, biology, and materials science.
He has been a professional software engineer since 2000, including serving as VP of
engineering for Silicon Genetics, a bioinformatics software company. Peter’s current
research interests include a focus on the intersection between physics and deep
learning.

Pat Walters heads the Computation and Informatics group at Relay Therapeutics in
Cambridge, MA. His group focuses on novel applications of computational methods
that integrate computer simulations and experimental data to provide insights that
drive drug discovery programs. Prior to joining Relay, he spent more than 20 years at
Vertex Pharmaceuticals, where he was Global Head of Modeling and Informatics.

Pat is a member of the editorial advisory board for the Journal of Medicinal Chemis‐
try, and previously held similar roles with Molecular Informatics and Letters in Drug
Design & Discovery. He continues to play an active role in the scientific community.
Pat was the chair of the 2017 Gordon Conference on Computer-Aided Drug Design
and has been instrumental in a number of community-driven efforts to evaluate com‐
putational methods, including the NIH-funded Drug Design Data Resource (D3R)
and the American Chemical Society TDT initiative. Pat received his PhD in organic
chemistry from the University of Arizona, where he studied the application of artifi‐
cial intelligence in conformational analysis. Prior to obtaining his PhD, he worked at
Varian Instruments as both a chemist and a software developer. Pat received his BS in
chemistry from the University of California, Santa Barbara.

Vijay Pande, PhD, is a general partner at Andreessen Horowitz, where he leads the
firm’s investments in companies at the cross section of biology and computer science,
including the application of computation, machine learning, and artificial intelligence
into biology and healthcare, as well as the application of novel transformative scien‐
tific advances. He is also an adjunct professor of bioengineering at Stanford, where he
advises into pioneering computational methods and their application to medicine
and biology, resulting in over two hundred publications, two patents, and two novel
drug treatments.

As an entrepreneur, Vijay is the founder of the Folding@Home Distributed Comput‐
ing Project for disease research, which pushes the boundaries of the development and
application of computer science techniques (such as distributed systems, machine
learning, and exotic computer architectures) into biology and medicine, in both fun‐
damental research and the development of new therapeutics. He also cofounded Glo‐
bavir Biosciences, where he translated his research advances at Stanford and
Folding@Home into a successful startup, discovering cures for dengue fever and
ebola. In his teens, he was the first employee at video game startup Naughty Dog Soft‐
ware, maker of Crash Bandicoot.

Colophon
The animal on the cover of Deep Learning for the Life Sciences is a male Sonnerat’s
junglefowl (Gallus sonneratii), also known as the gray junglefowl. The species name
sonneratii is a tribute to Pierre Sonnerat, a French naturalist and explorer. Sonnerat’s
junglefowl are native to southern and western India, which Sonnerat visited several
times between 1774 and 1781. The bird’s natural habitat is forest undergrowth and
bamboo thickets, but they thrive in a variety of environments, from forest to tropics
to plain.

Most of the Sonnerat’s junglefowl’s feathers are spotted white and brown. On the tips
of their wings and tails, they have black feathers with a twinge of blue. Male and
female Sonnerat’s junglefowl differ drastically by many measures. Roosters reach
about 30 inches in length, while hens grow to only about 15 inches. The roosters are
brighter than hens with glossy tails, golden speckles, and redish comb, legs, and wat‐
tle. The hens’ legs are yellow and their feathers are a more dull brown.

Clutches of these chicks are born with pale brown to beige coloring. The hens typi‐
cally lay 4 to 7 eggs between February and May. They lay the eggs in nests on the
ground lined with grass and twigs and incubate alone, without help from the rooster.

Sonnerat’s junglefowl are ancestors of domesticated chickens. They can breed with
common chickens and red junglefowl (both Gallus gallus), creating a variety of
hybrid species. When domesticated, they should be housed with solid walls around
them because they are skittish. The spotted brown and white feathers are commonly
used by fishermen for flies.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Wood’s Illustrated Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Why Life Science?
	Why Deep Learning?
	Contemporary Life Science Is About Data
	What Will You Learn?

	Chapter 2. Introduction to Deep Learning
	Linear Models
	Multilayer Perceptrons
	Training Models
	Validation
	Regularization
	Hyperparameter Optimization
	Other Types of Models
	Convolutional Neural Networks
	Recurrent Neural Networks

	Further Reading

	Chapter 3. Machine Learning with DeepChem
	DeepChem Datasets
	Training a Model to Predict Toxicity of Molecules
	Case Study: Training an MNIST Model
	The MNIST Digit Recognition Dataset
	A Convolutional Architecture for MNIST

	Conclusion

	Chapter 4. Machine Learning for Molecules
	What Is a Molecule?
	What Are Molecular Bonds?
	Molecular Graphs
	Molecular Conformations
	Chirality of Molecules

	Featurizing a Molecule
	SMILES Strings and RDKit
	Extended-Connectivity Fingerprints
	Molecular Descriptors

	Graph Convolutions
	Training a Model to Predict Solubility
	MoleculeNet
	SMARTS Strings

	Conclusion

	Chapter 5. Biophysical Machine Learning
	Protein Structures
	Protein Sequences
	A Short Primer on Protein Binding

	Biophysical Featurizations
	Grid Featurization
	Atomic Featurization

	The PDBBind Case Study
	PDBBind Dataset
	Featurizing the PDBBind Dataset

	Conclusion

	Chapter 6. Deep Learning for Genomics
	DNA, RNA, and Proteins
	And Now for the Real World
	Transcription Factor Binding
	A Convolutional Model for TF Binding

	Chromatin Accessibility
	RNA Interference
	Conclusion

	Chapter 7. Machine Learning for Microscopy
	A Brief Introduction to Microscopy
	Modern Optical Microscopy

	The Diffraction Limit
	Electron and Atomic Force Microscopy
	Super-Resolution Microscopy
	Deep Learning and the Diffraction Limit?

	Preparing Biological Samples for Microscopy
	Staining
	Sample Fixation
	Sectioning Samples
	Fluorescence Microscopy
	Sample Preparation Artifacts

	Deep Learning Applications
	Cell Counting
	Cell Segmentation
	Computational Assays

	Conclusion

	Chapter 8. Deep Learning for Medicine
	Computer-Aided Diagnostics
	Probabilistic Diagnoses with Bayesian Networks
	Electronic Health Record Data
	The Dangers of Large Patient EHR Databases?

	Deep Radiology
	X-Ray Scans and CT Scans
	Histology
	MRI Scans

	Learning Models as Therapeutics
	Diabetic Retinopathy
	Conclusion
	Ethical Considerations
	Job Losses
	Summary

	Chapter 9. Generative Models
	Variational Autoencoders
	Generative Adversarial Networks
	Applications of Generative Models in the Life Sciences
	Generating New Ideas for Lead Compounds
	Protein Design
	A Tool for Scientific Discovery
	The Future of Generative Modeling

	Working with Generative Models
	Analyzing the Generative Model’s Output

	Conclusion

	Chapter 10. Interpretation of Deep Models
	Explaining Predictions
	Optimizing Inputs
	Predicting Uncertainty
	Interpretability, Explainability, and Real-World Consequences
	Conclusion

	Chapter 11. A Virtual Screening Workflow Example
	Preparing a Dataset for Predictive Modeling
	Training a Predictive Model
	Preparing a Dataset for Model Prediction
	Applying a Predictive Model
	Conclusion

	Chapter 12. Prospects and Perspectives
	Medical Diagnosis
	Personalized Medicine
	Pharmaceutical Development
	Biology Research
	Conclusion

	Index
	About the Authors
	Colophon

