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Preface

This updated and expanded second edition brings several significant improvements to help you 

stay ahead in the evolving field of graph machine learning. Compared to the previous version, 

this edition features refined chapters for improved clarity and flow, new examples utilizing 

both legacy tools and modern frameworks such as PyTorch and DGL, and entirely new chapters  

covering cutting-edge topics such as temporal graph machine learning and the integration of 

large language models (LLMs).

Graph Machine Learning provides a powerful toolkit for processing network-structured data 

and leveraging the relationships between entities for predictive modeling, analytics, and 

more. You’ll begin with a concise introduction to graph theory, graph machine learning, and 

neural networks, building a foundational understanding of their principles and applications. 

As you progress, you’ll dive into the core machine learning models for graph representation 

learning, exploring their goals, inner workings, and practical implementation across various 

supervised and unsupervised tasks. You’ll develop an end-to-end machine learning pipeline, 

from data preprocessing to training and prediction, to fully harness the potential of graph data.  

Throughout the book, you’ll find real-world scenarios such as social network analysis, natural 

language processing with graphs, and financial transaction systems. The later chapters take you 

through the creation of scalable, data-intensive applications for storing, querying, and processing 

graph data and introduce you to the recent breakthroughs and emerging trends in the domain, 

some of which are the interaction between graphs and LLMs used in the context of generative AI 

and retrieval-augmented generation (RAG) systems. 

By the end of this book, you will have understood the key concepts of graph theory and machine 

learning algorithms, allowing you to develop impactful graph-based machine learning solutions.



Prefacexviii

Who this book is for
This book is for data analysts, graph developers, graph analysts, and graph professionals who 

want to leverage the information embedded in the connections and relations between data points, 

unravel hidden structures, and exploit topological information to boost their analysis and models’ 

performance. The book will also be useful for data scientists and machine learning developers 

who want to build machine learning-driven graph databases.

What this book covers
Chapter 1, Getting Started with Graphs, introduces the basic concepts of graph theory using the 

NetworkX Python library.

Chapter 2, Graph Machine Learning, introduces the main concepts of graph machine learning and 

graph embedding techniques.

Chapter 3, Neural Networks and Graphs, introduces Graph Neural Networks (GNNs) and the leading 

libraries for graph-based deep learning.

Chapter 4, Unsupervised Graph Learning, covers recent unsupervised graph embedding methods.

Chapter 5, Supervised Graph Learning, covers recent supervised graph embedding methods.

Chapter 6, Solving Common Graph-Based Machine Learning Problems, introduces the most common 

machine learning tasks on graphs.

Chapter 7, Social Network Graphs, shows an application of machine learning algorithms on social 

network data.

Chapter 8, Text Analytics and Natural Language Processing Using Graphs, shows an application of 

machine learning algorithms on a natural language processing task.

Chapter 9, Graphs Analysis for Credit Card Transactions, shows an application of machine learning 

algorithms in credit card fraud detection.

Chapter 10, Building a Data-Driven Graph-Powered Application, introduces some technologies and 

techniques useful to deal with large graphs.

Chapter 11, Temporal Graph Machine Learning, focuses on techniques to model and learn from 

dynamic, time-evolving graph data.

Chapter 12, GraphML and LLMs, explores how graph structures can enhance LLMs and how LLMs 

can be used for graph-based tasks.
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Chapter 13, Novel Trends on Graphs, introduces some novel trends (algorithms and applications) 

of graph machine learning.

To get the most out of this book
We recommend that you use Docker to have a reproducible environment and stable dependency 

sets. The provided Docker images – one for each chapter – ship with a Jupyter installation and 

a Python kernel with the dependencies pre-installed, which you can use to run all the examples. 

For some chapters, Neo4j, JanusGraph, and Gephi are also needed.

Software/hardware covered in the book OS requirements

Python Windows, macOS, and Linux (any)

Neo4j Windows, macOS, and Linux (any)

Gephi Windows, macOS, and Linux (any)

Docker Windows, macOS, and Linux (any)

A beginner-level understanding of graph databases and graph data is required. Intermediate-level 

working knowledge of Python programming and machine learning is also expected to make the 

most of this book.

The authors acknowledge the use of cutting-edge AI, such as ChatGPT, with the sole aim of  

enhancing the language and clarity within the book, thereby ensuring a smooth reading  

experience for readers. It’s important to note that the content itself has been crafted by the authors 

and edited by a professional publishing team.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Graph-Machine-Learning. We also have other code bundles from our rich catalog of books and 

videos available at https://github.com/PacktPublishing. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file 

extensions, pathnames, dummy URLs, user input, and X/Twitter handles. For example: “For this 

exercise, we will be using a GraphSAGE encoder with three layers of 32, 32, and 16 dimensions, 

respectively.”

https://github.com/PacktPublishing/Graph-Machine-Learning-Second-Edition
https://github.com/PacktPublishing/Graph-Machine-Learning-Second-Edition
https://github.com/PacktPublishing
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A block of code is set as follows:

TMF_model = TMF(num_nodes, hid_dim, win_size, num_epochs, alpha, beta, 
theta, learn_rate, device)

adj_est = TMF_model.TMF_fun(adj_list)

Any command-line input or output is written as follows:

Precision: 0.9636952636282395

Recall: 0.9777853337866939

F1-Score: 0.9706891701828411

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of 

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 

happen. If you have found a mistake in this book, we would be grateful if you reported this to us. 

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 

be grateful if you would provide us with the location address or website name. Please contact us 

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com/.

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/
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Share Your Thoughts
Once you’ve read Graph Machine Learning, Second Edition, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re  
delivering excellent quality content.

click here to go straight to the Amazon review page
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Part 1
Introduction to Graph 

Machine Learning
In this part, you will get a brief introduction to graph machine learning, showing the potential of 

graphs combined with the right machine learning algorithms. Moreover, a general overview of 

graph theory and Python libraries is provided in order to allow you to deal with (create, modify, 

and plot) graph data structures.

This part comprises the following chapters:

•	 Chapter 1, Getting Started with Graphs

•	 Chapter 2, Graph Machine Learning

•	 Chapter 3, Neural Networks and Graphs
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Getting Started with Graphs

Graphs are mathematical structures that are used for describing relationships between entities, 

and they are used almost everywhere. They can be used for representing maps, where cities 

are linked through streets. Graphs can describe biological structures, web pages, and even the  

progression of neurodegenerative diseases. For example, social networks are graphs, where users 

are connected by links representing the “follow” relationship.

Graph theory, the study of graphs, has received major interest for years, leading people to develop 

algorithms, identify properties, and define mathematical models to better understand complex 

behaviors.

This chapter will review some of the concepts behind graph-structured data. Theoretical notions 

will be presented, together with examples to help you understand some of the more general 

concepts and put them into practice. In this chapter, we will introduce and use some of the most 

widely used Python libraries for the creation, manipulation, and study of the structure dynamics 

and functions of complex networks.

The following topics will be covered in this chapter:

•	 General information on the practical exercises and how to set up the Python environment 

to run them

•	 Introduction to graphs with networkx

•	 Plotting graphs

•	 Graph properties

•	 Benchmarks and repositories

•	 Dealing with large graphs
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Practical exercises
For all of our exercises, we will be using Jupyter Notebook. Along with the book, we provide a 

GitHub repository at https://github.com/PacktPublishing/Graph-Machine-Learning, where 

all of the notebooks are provided and organized in different folders, one for each chapter of the 

book.

Each chapter is also based on a self-contained and separated environment, bundling all of 

the dependencies required to run the exercises of a given chapter. The Python version and the  

version of the dependencies may slightly vary depending on the set of libraries used in the chapter.  

Version management is implemented using Poetry, which allows us to resolve, manage, and 

update dependencies easily, making sure that the environments are fully reproducible.

Direct dependencies (including the Python version) are specified in each chapter/folder in the 

pyproject.toml file. If you are using Poetry, you can simply install the environment by using:

poetry install

Otherwise, if you don’t have a Poetry installation on your local machine, you can also use pip. 

Along with the pyproject.toml and poetry.lock files, we also provide a requirements.txt file 

with the entire set of dependencies (also transitive) pinned to the exact version used to run the 

examples, which can be installed using:

pip install -r requirements.txt

Moreover, we also provide a Docker image with a Jupyter server installation integrated with 

the different Python environments. Each chapter’s environment is loaded as a separated kernel 

and the different notebooks are already configured to use the respective environment. Docker 

can be installed on multiple operating systems (Linux, Windows, and macOS). Please refer to 

the website for guidance on how to set up Docker on your system. If you are a beginner, we also 

suggest you install Docker Desktop for an easy-to-use graphical user interface (GUI) to interact 

with the Docker Engine.

Once Docker is installed, you can start the containerized image either via the GUI or using the CLI:

docker run \

     -p 8888:8888 \

     --name graph-machine-learning-box \

     graph-machine-learning:latest

https://github.com/PacktPublishing/Graph-Machine-Learning
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You can find more information on how to run and build the Graph Machine Learning book image 

in the README.md file at https://github.com/PacktPublishing/Graph-Machine-Learning/

blob/main/docker/README.md.

The image will run a Jupyter server, available at http://localhost:8888/. The environments of 

the different chapters have already been configured and loaded in the Jupyter server, and they can 

be selected when creating a new notebook. The notebooks in the different chapters are already 

configured to bind to the correct kernel.

Conventions
In this book, the following Python commands will be referred to:

•	 import networkx as nx

•	 import pandas as pd

•	 import numpy as np

Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter01. Please refer to the Practical exercises section 

for guidance on how to set up the environment to run the examples in this chapter, either using 

Poetry, pip, or Docker.

For more complex data visualization tasks provided in this chapter, Gephi (https://gephi.org/) 

may also be required. The installation manual is available here: https://gephi.org/users/

install/.https://gephi.org/users/install/.

Introduction to graphs with networkx
In this section, we will give a general introduction to graph theory. Moreover, to link theoretical 

concepts to their practical application, we will use code snippets in Python. We will use Networkx, 

a powerful Python library for creating, manipulating, and studying complex networks and graphs. 

networkx is flexible and easy to use, which makes it an excellent didactic tool for beginners and a 

practical tool for advanced users. It can handle relatively large graphs, and features many built-in 

algorithms for analyzing networks.

A graph G is defined as a couple G=(V,E), where V={V1 ,…, Vn} is a set of nodes (also called vertices) 

and E={{Vk, Vw}, …, {Vi, Vj}} is a set of two-sets (set of two elements) of edges (also called links), 

representing the connection between two nodes belonging to V.

https://github.com/PacktPublishing/Graph-Machine-Learning/blob/main/docker/README.md
https://github.com/PacktPublishing/Graph-Machine-Learning/blob/main/docker/README.md
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter01
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter01
https://gephi.org/
https://gephi.org/users/install/
https://gephi.org/users/install/
https://gephi.org/users/install/
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It is important to underline that since each element of E is a two-set, there is no order between 

each edge. To provide more detail, {Vk, Vw} and {Vw, Vk} represent the same edge. We will call this 

kind of graph undirected.

We’ll now provide definitions for some basic properties of graphs and nodes, as follows:

•	 The order of a graph is the number of its vertices |V|. The size of a graph is the number 

of its edges |E|.

•	 The degree of a vertex is the number of edges that are adjacent to it. The neighbors of a 

vertex v in a graph G are a subset of vertex V’ induced by all vertices adjacent to v.

•	 The neighborhood graph (also known as an ego graph) of a vertex v in a graph G is a 

subgraph of G, composed of the vertices adjacent to v and all edges connecting vertices 

adjacent to v.

For example, imagine a graph representation of a road map, where nodes represent cities and 

edges represent roads connecting those cities. An example of what such a graph may look like is 

illustrated in the following figure:

Figure 1.1: Example of a graph

According to this representation, since there is no direction, an edge from Milan to Paris is equal 

to an edge from Paris to Milan. Thus, it is possible to move in the two directions without any 

constraint. If we analyze the properties of the graph depicted in Figure 1.1, we can see that it has 

order and size equal to 4 (there are, in total, four vertices and four edges). The Paris and Dublin 

vertices have degree 2, Milan has degree 3, and Rome has degree 1. The neighbors for each node 

are shown in the following list:
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•	 Paris = {Milan, Dublin}

•	 Milan = {Paris, Dublin, Rome}

•	 Dublin = {Paris, Milan}

•	 Rome = {Milan}

The same graph can be represented in Networkx, as follows:

import networkx as nx

G = nx.Graph()

V = {'Dublin', 'Paris', 'Milan', 'Rome'}

E = [('Milan','Dublin'), ('Milan','Paris'), ('Paris','Dublin'), 
('Milan','Rome')]

G.add_nodes_from(V)

G.add_edges_from(E)

Since, by default, the nx.Graph() command generates an undirected graph, we do not need to 

specify both directions of each edge. In Networkx, nodes can be any hashable object: strings, 

classes, or even other Networkx graphs. Let’s now compute some properties of the graph we 

previously generated.

All the nodes and edges of the graph can be obtained by running the following code:

print(f"V = {G.nodes}")

print(f"E = {G.edges}")

Here is the output of the previous commands:

V = ['Rome', 'Dublin', 'Milan', 'Paris']

E = [('Rome', 'Milan'), ('Dublin', 'Milan'), ('Dublin', 'Paris'), 
('Milan', 'Paris')]

We can also compute the graph order, the graph size, and the degree and neighbors for each of 

the nodes, using the following commands:

print(f"Graph Order: {G.number_of_nodes()}")

print(f"Graph Size: {G.number_of_edges()}")

print(f"Degree for nodes: { {v: G.degree(v) for v in G.nodes} }")

print(f"Neighbors for nodes: { {v: list(G.neighbors(v)) for v in G.nodes} 
}")
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The result will be the following:

Graph Order: 4

Graph Size: 4

Degree for nodes: {'Rome': 1, 'Paris': 2, 'Dublin':2, 'Milan': 3}

Neighbors for nodes: {'Rome': ['Milan'], 'Paris': ['Milan', 'Dublin'], 
'Dublin': ['Milan', 'Paris'], 'Milan': ['Dublin', 'Paris', 'Rome']}

Finally, we can also compute an ego graph of a specific node for the graph G, as follows:

ego_graph_milan = nx.ego_graph(G, "Milan")

print(f"Nodes: {ego_graph_milan.nodes}")

print(f"Edges: {ego_graph_milan.edges}")

The result will be the following:

Nodes: ['Paris', 'Milan', 'Dublin', 'Rome']

Edges: [('Paris', 'Milan'), ('Paris', 'Dublin'), ('Milan', 'Dublin'), 
('Milan', 'Rome')]

The original graph can be also modified by adding new nodes and/or edges, as follows:

# Add new nodes and edges

new_nodes = {'London', 'Madrid'}

new_edges = [('London','Rome'), ('Madrid','Paris')]

G.add_nodes_from(new_nodes)

G.add_edges_from(new_edges)

print(f"V = {G.nodes}")

print(f"E = {G.edges}")

This would output the following lines:

V = ['Rome', 'Dublin', 'Milan', 'Paris', 'London', 'Madrid']

E = [('Rome', 'Milan'), ('Rome', 'London'), ('Dublin', 'Milan'), 
('Dublin', 'Paris'), ('Milan', 'Paris'), ('Paris', 'Madrid')]

Removal of nodes can be done by running the following code:

node_remove = {'London', 'Madrid'}

G.remove_nodes_from(node_remove)

print(f"V = {G.nodes}")

print(f"E = {G.edges}")
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This is the result of the preceding commands:

V = ['Rome', 'Dublin', 'Milan', 'Paris']

E = [('Rome', 'Milan'), ('Dublin', 'Milan'), ('Dublin', 'Paris'), 
('Milan', 'Paris')]

As expected, all the edges that contain the removed nodes are automatically deleted from the 

edge list.

Also, edges can be removed by running the following code:

node_edges = [('Milan','Dublin'), ('Milan','Paris')]

G.remove_edges_from(node_edges)

print(f"V = {G.nodes}")

print(f"E = {G.edges}")

The final result will be as follows:

V = ['Dublin', 'Paris', 'Milan', 'Rome']

E = [('Dublin', 'Paris'), ('Milan', 'Rome')]

The networkx library also allows us to remove a single node or a single edge from graph G by using 

the following commands: G.remove_node('Dublin') and G.remove_edge('Dublin', 'Paris').

Types of graphs
In the previous section, we discussed how to create and modify simple undirected graphs. However, 

there are other formalisms available for modeling graphs. In this section, we will explore how to 

extend graphs to capture more detailed information by introducing directed graphs (digraphs), 

weighted graphs, and multigraphs.

Digraphs
A digraph G is defined as a couple G=(V, E), where V={V1, …, Vn} is a set of nodes and E={(Vk, Vw), …, 

(Vi, Vj)} is a set of ordered couples representing the connection between two nodes belonging to V.

Since each element of E is an ordered couple, it enforces the direction of the connection. The edge 

(Vk, Vw) means the node Vk goes into Vw. This is different from (Vw, Vk) since it means the node 

Vw goes into Vk. The starting node Vw is called the head, while the ending node is called the tail.

Due to the presence of edge direction, the definition of node degree needs to be extended.
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In-degree and out-degree
For a vertex v, the number of head ends adjacent to v is called the in-degree (indicated by deg-(v)) 

of v, while the number of tail ends adjacent to v is its out-degree (indicated by deg+(v)).

For instance, imagine our road map where, this time, certain roads are one-way. For example, 

you can travel from Milan to Rome, but not back using the same road. We can use a digraph to 

represent such a situation, which will look like the following figure:

Figure 1.2: Example of a digraph

The direction of the edge is visible from the arrow—for example, Milan -> Dublin means from 

Milan to Dublin. Dublin has deg-(v) = 2 and deg+(v) = 0, Paris has deg-(v) = 0 and deg+(v) = 2, Milan 

has deg-(v) = 1 and deg+(v) = 2, and Rome has deg-(v) = 1 and deg+(v) = 0.

The same graph can be represented in networkx, as follows:

G = nx.DiGraph()

V = {'Dublin', 'Paris', 'Milan', 'Rome'}

E = [('Milan','Dublin'), ('Paris','Milan'), ('Paris','Dublin'),
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('Milan','Rome')]

G.add_nodes_from(V)

G.add_edges_from(E)

The definition is the same as that used for simple undirected graphs; the only difference is in the 

networkx classes that are used to instantiate the object. For digraphs, the nx.DiGraph() class 

is used.

In-degree and out-degree can be computed using the following commands:

print(f"Indegree for nodes: { {v: G.in_degree(v) for v in G.nodes} }")

print(f"Outdegree for nodes: { {v: G.out_degree(v) for v in G.nodes} }")

The results will be as follows:

Indegree for nodes: {'Rome': 1, 'Paris': 0, 'Dublin': 2, 'Milan': 1}

Outdegree for nodes: {'Rome': 0, 'Paris': 2, 'Dublin': 0, 'Milan': 2}

As for the undirected graphs, the G.add_nodes_from(), G.add_edges_from(), G.remove_nodes_

from(), and G.remove_edges_from() functions can be used to modify a given graph G.

Multigraph
We will now introduce the multigraph object, which is a generalization of the graph definition 

that allows multiple edges to have the same pair of start and end nodes.

A multigraph G is defined as G=(V, E), where V is a set of nodes and E is a multi-set (a set allowing 

multiple instances for each of its elements) of edges.

A multigraph is called a directed multigraph if E is a multi-set of ordered couples; otherwise, if 

E is a multi-set of two-sets, then it is called an undirected multigraph.
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To make this clearer, imagine our road map where some cities (nodes) are connected by multiple 

roads (edges). For example, there could be two highways between Milan and Dublin: one might 

be a direct toll road, while the other is a scenic route. These multiple connections between the 

same cities can be captured by a multigraph, where both roads are represented as distinct edges 

between the same pair of nodes. Similarly, if one of these roads is one-way, the graph becomes 

a directed multigraph, allowing us to represent complex road networks more accurately. An  

example of a directed multigraph is shown in the following figure:

Figure 1.3: Example of a multigraph

In the following code snippet, we show how to use Networkx in order to create a directed or an 

undirected multigraph:

directed_multi_graph = nx.MultiDiGraph()

undirected_multi_graph = nx.MultiGraph()

V = {'Dublin', 'Paris', 'Milan', 'Rome'}

E = [('Milan','Dublin'), ('Milan','Dublin'), ('Paris','Milan'), 
('Paris','Dublin'), ('Milan','Rome'), ('Milan','Rome')]

directed_multi_graph.add_nodes_from(V)

undirected_multi_graph.add_nodes_from(V)

directed_multi_graph.add_edges_from(E)

undirected_multi_graph.add_edges_from(E)

The only difference between a directed and an undirected multigraph is in the first two lines, 

where two different objects are created: nx.MultiDiGraph() is used to create a directed  

multigraph, while nx.MultiGraph() is used to build an undirected multigraph. The function 

used to add nodes and edges is the same for both objects.
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Weighted graphs
We will now introduce directed, undirected, and multi-weighted graphs.

An edge-weighted graph (or simply a weighted graph) G is defined as G=(V, E ,w) where V is a 

set of nodes, E is a set of edges, and 𝑤𝑤𝑤𝑤𝑤 𝑤 𝑤 is the weighted function that assigns at each edge 𝑒𝑒 𝑒 𝑒𝑒 a weight expressed as a real number.

A node-weighted graph G is defined as G=(V, E ,w), where V is a set of nodes, E is a set of edges, 

and 𝑤𝑤𝑤𝑤𝑤 𝑤 𝑤 is the weighted function that assigns at each node 𝑣𝑣 𝑣 𝑣𝑣 a weight expressed as 

a real number.

Please keep in mind the following points:

•	 If E is a set of ordered couples, then we call it a directed weighted graph.

•	 If E is a set of two-sets, then we call it an undirected weighted graph.

•	 If E is a multi-set of ordered couples, we will call it a directed weighted multigraph.

•	 If E is a multi-set of two-sets, it is an undirected weighted multigraph.

An example of a directed edge-weighted graph is shown in the following figure:

Figure 1.4: Example of a directed edge-weighted graph
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From Figure 1.4, it is easy to see how the presence of weights on graphs helps to add useful  

information to the data structures. Indeed, we can imagine the edge weight as a “cost” to reach 

a node from another node. For example, reaching Dublin from Milan has a “cost” of 19, while 

reaching Dublin from Paris has a “cost” of 11.

In networkx, a directed weighted graph can be generated as follows:

G = nx.DiGraph()

V = {'Dublin', 'Paris', 'Milan', 'Rome'}

E = [('Milan','Dublin', 19), ('Paris','Milan', 8), ('Paris','Dublin', 11), 
('Milan','Rome', 5)]

G.add_nodes_from(V)

G.add_weighted_edges_from(E)

Multipartite graphs
We will now introduce another type of graph that will be used in this section: multipartite graphs. 

Bi- and tri-partite graphs—and, more generally, kth-partite graphs—are graphs whose vertices 

can be partitioned in two, three, or more k-th sets of nodes, respectively. Edges are only allowed 

across different sets and are not allowed within nodes belonging to the same set. In most cases, 

nodes belonging to different sets are also characterized by particular node types. To illustrate this 

with our road map example, imagine a scenario where we want to represent different types of 

entities: cities, highways, and rest stops. Here, we can model the system using a tripartite graph. 

One set of nodes could represent the cities, another set the highways, and a third set the rest stops. 

Edges would exist only between these sets—such as connecting a city to a highway or a highway 

to a rest stop—but not between cities directly or between rest stops.

In Chapter 8, Text Analytics and Natural Language Processing Using Graphs, and Chapter 9, Graph 

Analysis for Credit Card Transactions, we will deal with some practical examples of graph-based 

applications and you will see how multipartite graphs can indeed arise in several contexts—for 

example, in the following scenarios:
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•	 When processing documents and structuring the information in a bipartite graph of  

documents and entities that appear in the documents

•	 When dealing with transactional data, in order to encode the relations between the buyers 

and the merchants

A bipartite graph can be easily created in networkx with the following code:

import pandas as pd

import numpy as np

n_nodes = 10

n_edges = 12

bottom_nodes = [ith for ith in range(n_nodes) if ith % 2 ==0]

top_nodes = [ith for ith in range(n_nodes) if ith % 2 ==1]

iter_edges = zip(

    np.random.choice(bottom_nodes, n_edges), 

    np.random.choice(top_nodes, n_edges))

edges = pd.DataFrame([

    {"source": a, "target": b} for a, b in iter_edges])

B = nx.Graph()

B.add_nodes_from(bottom_nodes, bipartite=0)

B.add_nodes_from(top_nodes, bipartite=1)

B.add_edges_from([tuple(x) for x in edges.values])

The network can also be conveniently plotted using the bipartite_layout utility function of 

Networkx, as illustrated in the following code snippet:

from networkx.drawing.layout import bipartite_layout

pos = bipartite_layout(B, bottom_nodes)

nx.draw_networkx(B, pos=pos)
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The bipartite_layout function produces a graph, as shown in the following figure. Intuitively, 

we can see this graph is bipartite because there are no “vertical” edges connecting left nodes with 

left nodes or right nodes with right nodes. Notice that the nodes in the bottom_nodes parameter 

appear on one side of the layout, while all the remaining nodes appear on the other side. This 

arrangement helps visualize the two sets and the connections between them clearly.

Figure 1.5: Example of a bipartite graph

Connected graphs
Finally, it’s important to note that not all parts of a graph are always connected. In some cases, 

a set of connected nodes can exist independently from another set within the same graph. We 

define connected graphs as graphs in which every node is reachable from any other node.
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Disconnected graphs
Conversely, a disconnected graph contains at least one pair of nodes that cannot be reached 

from each other. For example, consider a road map where one cluster of cities is connected by 

roads (like Dublin, Paris, and Milan), while another cluster (such as Rome, Naples, and Moscow) 

is completely separate, with no direct roads linking them.

Complete graphs
We define a complete graph as a graph in which all nodes are directly reachable from each other, 

leading to a highly interconnected structure.

Graph representations
As described earlier, with networkx, we can define and manipulate a graph by using node and 

edge objects. However, in certain cases, this representation may become cumbersome to work 

with. For instance, if you have a large, densely connected graph (such as a network of thousands 

of interconnected cities), visualizing and managing individual node and edge objects can be  

overwhelming and inefficient. In this section, we will introduce two more compact ways to repre-

sent a graph: the adjacency matrix and the edge list. These methods allow us to represent the same 

graph data in a more structured and manageable form, especially for large or complex networks. 

For example, if your application requires no or minor modification to the graph structure and 

needs to check for the presence of an edge as fast as possible, an adjacency matrix is what you 

are looking for because accessing a cell in a matrix is a very fast operation from a computational 

point of view.
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Adjacency matrix
The adjacency matrix M of a graph G=(V, E) is a square matrix (|V| × |V|) such that its element 

Mij is 1 when there is an edge from node i to node j, and 0 when there is no edge. In the following 

figure, we show a simple example of the adjacency matrix of different types of graphs:

Figure 1.6: Adjacency matrix for an undirected graph, a digraph, a multigraph, and a weighted 
graph
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It is easy to see that adjacency matrices for undirected graphs are always symmetric since 

no direction is defined for the edge. However, the symmetry is not guaranteed for the  

adjacency matrix of a digraph due to the presence of constraints in the direction of the edges. For a  

multigraph, we can instead have values greater than 1 since multiple edges can be used to connect 

the same couple of nodes. For a weighted graph, the value in a specific cell is equal to the weight 

of the edge connecting the two nodes.

In networkx, the adjacency matrix for a given graph can be computed using a pandas DataFrame 

or numpy matrix. If G is the graph shown in Figure 1.6, we can compute its adjacency matrix as 

follows:

nx.to_pandas_adjacency(G) #adjacency matrix as pd DataFrame

nt.to_numpy_matrix(G) #adjacency matrix as numpy matrix

For the first and second lines, we get the following results, respectively:

         Rome   Dublin Milan  Paris

Rome     0.0     0.0    0.0    0.0

Dublin   0.0     0.0    0.0    0.0

Milan    1.0     1.0    0.0    0.0

Paris    0.0     1.0    1.0    0.0

[[0. 0. 0. 0.]

[0. 0. 0. 0.]

[1. 1. 0. 0.]

[0. 1. 1. 0.]]

Since a numpy matrix cannot represent the name of the nodes, the order of the element in the 

adjacency matrix is the one defined in the G.nodes list.

In general, you can choose a pandas DataFrame for better readability and data manipulation, or 

a numpy matrix for efficient numerical operations.

Edge list
As well as an adjacency matrix, an edge list is another compact way to represent graphs. The idea 

behind this format is to represent a graph as a list of edges.
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The edge list L of a graph G=(V, E) is a list of size |E| matrix such that its element Li is a couple 

representing the tail and the end node of the edge i. An example of the edge list for each type of 

graph is shown in the following figure:

Figure 1.7: Edge list for an undirected graph, a digraph, a multigraph, and a weighted graph
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In the following code snippet, we show how to compute in networkx the edge list of the simple 

undirected graph G shown in Figure 1.7:

print(nx.to_pandas_edgelist(G))

By running the preceding command, we get the following result:

  source  target

0  Milan  Dublin

1  Milan    Rome

2  Paris   Milan

3  Paris  Dublin

It is noteworthy that nodes with zero degrees may never appear in the list.

Adjacency matrices and edge lists are two of the most common graph representation methods. 

However, other representation methods, which we will not discuss in detail, are also available 

in networkx. Some examples are nx.to_dict_of_dicts(G) and nx.to_numpy_array(G), among 

others.

Plotting graphs
As we have seen in previous sections, graphs are intuitive data structures represented graphically. 

Nodes can be plotted as simple circles, while edges are lines connecting two nodes.

Despite their simplicity, it could be quite difficult to make a clear representation when the  

number of edges and nodes increases. The source of this complexity is mainly related to the 

position (space/Cartesian coordinates) assigned to each node in the final plot. Indeed, it could 

be unfeasible to manually assign to a graph with hundreds of nodes the specific position of each 

node in the final plot.

In this section, we will see how we can plot graphs without specifying coordinates for each node. 

We will exploit two different solutions: Networkx and Gephi.

NetworkX
NetworkX offers a simple interface to plot graph objects through the nx.draw library. In the  

following code snippet, we show how to use the library in order to plot graphs:

def draw_graph(G, nodes_position, weight):

      nx.draw(G, nodes_position,

      with_labels=True,
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      font_size=15,

      node_size=400,

      edge_color='gray',

      arrowsize=30)

      if plot_weight:

         edge_labels=nx.get_edge_attributes(G,'weight')

         nx.draw_networkx_edge_labels(G,

                                      node_position,

                                      edge_labels=edge_labels)

Here, nodes_position is a dictionary where the keys are the nodes and the value assigned to 

each key is an array of length 2, with the Cartesian coordinates used for plotting the specific node.

The nx.draw function will plot the whole graph by putting its nodes in the given positions. The 

with_labels option will plot its name on top of each node with the specific font_size value. 

node_size and edge_color will respectively specify the size of the circle, representing the node 

and the color of the edges. Finally, arrowsize will define the size of the arrow for directed edges 

(notice that arrowsize is meaningful only when plotting graphs in which edges are drawn as 

arrows, such as digraphs).

In the following code example, we show how to use the draw_graph function previously defined 

in order to plot a graph:

G = nx.Graph()

V = {'Paris', 'Dublin','Milan', 'Rome'}

E = [('Paris','Dublin', 11), ('Paris','Milan', 8),

     ('Milan','Rome', 5), ('Milan','Dublin', 19)]

G.add_nodes_from(V)

G.add_weighted_edges_from(E)

node_position = {"Paris": [0,0], "Dublin": [0,1], "Milan": [1,0], "Rome": 
[1,1]}

draw_graph(G, node_position, True)
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The result of the plot is shown in the following figure:

Figure 1.8: Result of the plotting function

The method previously described is simple but unfeasible to use in a real scenario since the 

node_position value could be difficult to decide. In order to solve this issue, networkx offers 

a different function to automatically compute the position of each node according to different  

layouts. In Figure 1.9, we show a series of plots of an undirected graph, obtained using the different 

layouts available in NetworkX. In order to use them in the function we proposed, we simply need 

to assign node_position to the result of the layout we want to use—for example, node_position 

= nx.circular_layout(G). The plots can be seen in the following figure:
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Figure 1.9: Plots of the same undirected graph with different layouts

networkx is a great tool for easily manipulating and analyzing graphs, but it has limitations when 

it comes to creating complex and visually appealing plots of large graphs. For instance, when 

visualizing a social network with thousands of users and their interactions, overlapping nodes 

and edges can make graph interpretation difficult.

In the next section, we will investigate another tool to perform complex graph visualization: Gephi.

Gephi
In this section, we will show how Gephi (open source network analysis and visualization  

software) can be used for performing complex, fancy plots of graphs. For all the examples shown 

in this section, we will use the Les Miserables.gexf sample (a weighted undirected graph), 

which can be selected in the Welcome window when the application starts.
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The main interface of Gephi is shown in Figure 1.10. It can be divided into four main areas, as 

follows:

•	 Graph: This section shows the final plot of the graph. The image is automatically updated 

each time a filter or a specific layout is applied.

•	 Appearance: Here, it is possible to specify the appearance of nodes and edges.

•	 Layout: In this section, it is possible to select the layout (as in NetworkX) to adjust the 

node position in the graph. Different algorithms, from a simple random position generator 

to a more complex Yifan Hu algorithm, are available.

•	 Filters & Statistics: In this set area, two main functions are available, outlined as follows:

a.	 Filters: In this tab, it is possible to filter and visualize specific subregions of the 

graph according to a set of properties computed using the Statistics tab.

b.	 Statistics: This tab contains a list of available graph metrics that can be computed 

on the graph using the Run button. Once metrics are computed, they can be used 

as properties to specify the edges’ and nodes’ appearance (such as node and edge 

size and color) or to filter a specific subregion of the graph.

You can see the main interface of Gephi in the following screenshot:

Figure 1.10: Gephi main window
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Our exploration of Gephi starts with the application of different layouts to the graph. As  

previously described, in NetworkX, the layouts allow us to assign to each node a specific position 

in the final plot. In Gephi 1.2, different layouts are available. In order to apply a specific layout, 

we have to select one of the available layouts from the Layout area, and then click on the Run 

button that appears after the selection.

The graph representation, visible in the Graph area, will be automatically updated according to 

the new coordinates defined by the layout. It should be noted that some layouts are parametric, 

hence the final graph plot can significantly change according to the parameters used. In the  

following figure, we propose several examples for the application of three different layouts:

Figure 1.11: Plot of the same graph with different layouts

We will now introduce the available options in the Appearance menu, visible in Figure 1.10. In 

this section, it is possible to specify the style to be applied to edges and nodes. The style to be 

applied can be static or can be dynamically defined by specific properties of the nodes/edges. We 

can change the color and the size of the nodes by selecting the Nodes option in the menu.

In order to change the color, we have to select the color palette icon and decide, using the specific 

button, if we want to assign a Unique color, a Partition (discrete values), or a Ranking (range of 

values) of colors. For Partition and Ranking, it is possible to select a specific Graph property from 

the drop-down menu to use as a reference for the color range. Only the properties computed by 

clicking Run in the Statistics area are available in the drop-down menu. The same procedure can 

be used in order to set the size of the nodes. By selecting the concentric circles icon, it is possible 

to set a Unique size to all the nodes or to specify a Ranking of size according to a specific property.

As for the nodes, it is also possible to change the style of the edges by selecting the Edges option 

in the menu. 
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We can then select to assign a Unique color, a Partition (discrete values), or a Ranking (range of 

values) of colors. For Partition and Ranking, the reference value to build the color scale is defined 

by a specific Graph property that can be selected from the drop-down menu.

It is important to remember that in order to apply a specific style to the graph, the Apply button 

should be clicked. As a result, the graph plot will be updated according to the style defined. In the 

following figure, we show an example where the color of the nodes is given by the Modularity 

Class value, the size of each node is given by its degree, and the color of each edge is defined by 

the edge weight:

Figure 1.12: Example of graph plot changing nodes’ and edges’ appearance

Another important section that needs to be described is Filters & Statistics. In this menu, it is 

possible to compute some statistics based on graph metrics.
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Finally, we conclude our discussion on Gephi by introducing the functionalities available in 

the Statistics menu, visible in the right panel in Figure 1.10. Through this menu, it is possible to 

compute different statistics on the input graph. Those statistics can be easily used to set some 

properties of the final plot, such as nodes’/edges’ color and size, or to filter the original graph 

to plot just a specific subset of it. In order to compute a specific statistic, the user then needs to 

explicitly select one of the metrics available in the menu and click on the Run button (Figure 1.10, 

right panel).

Moreover, the user can select a subregion of the graph, using the options available in the Filters 

tab of the Statistics menu, visible in the right panel in Figure 1.10. An example of filtering a graph 

can be seen in Figure 1.13. To provide more details of this, we build and apply to the graph a filter, 

using the Degree property. The result of the filters is a subset of the original graph, where only 

the nodes (and their edges) having the specific range of values for the Degree property are visible.

This is illustrated in the following screenshot:

Figure 1.13: Example of a graph filtered according to a range of values for Degree
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Of course, Gephi allows us to perform more complex visualization tasks and contains a lot 

of functionalities that cannot be fully covered in this book. Some good references to better  

investigate all the features available in Gephi are the official Gephi guide (https://gephi.org/

users/) and the Gephi Cookbook book by Packt Publishing.

Graph properties
As we have already learned, a graph is a mathematical model that is used for describing  

relationships between entities. However, each complex network presents intrinsic properties. 

Such properties can be measured by particular metrics, and each measure may characterize one 

or several local and global aspects of the graph.

In a graph for a social network such as X (formerly known as Twitter), for example, users  

(represented by the nodes of the graph) are connected to each other. However, there are users 

who are more connected than others (influencers). On the Reddit social graph, users with similar 

characteristics tend to group into communities.

We have already mentioned some of the basic features of graphs, such as the number of nodes and 

edges in a graph, which constitute the size of the graph itself. Those properties already provide a 

good description of the structure of a network. Think about the Facebook graph, for example: it 

can be described in terms of the number of nodes and edges. Such numbers easily allow it to be 

distinguished from a much smaller network (for example, the social structure of an office) but 

fail to characterize more complex dynamics (for example, how similar nodes are connected). To 

this end, more advanced graph-derived metrics can be considered, which can be grouped into 

four main categories, outlined as follows:

•	 Integration metrics: These measure how nodes tend to be interconnected with each other.

•	 Segregation metrics: These quantify the presence of groups of interconnected nodes, 

known as communities or modules, within a network.

•	 Centrality metrics: These assess the importance of individual nodes inside a network.

•	 Resilience metrics: These can be thought of as a measure of how much a network can 

maintain and adapt its operational performance when facing failures or other adverse 

conditions.

Those metrics are defined as global when expressing a measure of an overall network. On the 

other hand, local metrics measure values of individual network elements (nodes or edges). In 

weighted graphs, each property may or may not account for the edge weights, leading to weighted 

and unweighted metrics.

https://gephi.org/users/
https://gephi.org/users/
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In the following section, we describe some of the most used metrics that measure global 

and local properties. For simplicity, unless specified differently in the text, we illustrate the  

global unweighted version of the metric. In several cases, this is obtained by averaging the local  

unweighted properties of the node.

Integration metrics
In this section, some of the most frequently used integration metrics will be described.

Distance, path, and shortest path
The concept of distance in a graph is often related to the number of edges to traverse to reach a 

target node from a given source node.

Consider a source node i and a target node j. The set of edges connecting node i to node j is 

called a path. When studying complex networks, we are often interested in finding the shortest 

path between two nodes. The shortest path between a source node i and a target node j is the 

path having the lowest number of edges compared to all the possible paths between i and j. The 

diameter of a network is the number of edges contained in the longest shortest path among all 

possible shortest paths.

Look at the following figure. There are different paths to reach Tokyo from Dublin. However, one 

of them is the shortest (the edges on the shortest path are highlighted):

Figure 1.14: The shortest path between two nodes
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The shortest_path function of the NetworkX Python library enables users to quickly compute the 

shortest path between two nodes in a graph. Consider the following code, in which a seven-node 

graph is created using networkx. For clarity and simplicity in creating the graph structure, we 

will use numerical identifiers for the nodes, even though they represent cities:

G = nx.Graph()

nodes = {1:'Dublin',2:'Paris',3:'Milan',4:'Rome',5:'Naples',

         6:'Moscow',7:'Tokyo'}

G.add_nodes_from(nodes.keys())

G.add_edges_from([(1,2),(1,3),(2,3),(3,4),(4,5),(5,6),(6,7),(7,5)])

The shortest path between a source node (for example, 'Dublin', identified by key 1) and a target 

node (for example, 'Tokyo', identified by key 7) can be obtained as follows:

path = nx.shortest_path(G,source=1,target=7)

This should output the following:

[1,3,4,5,7]

Here, [1,3,4,5,7] are the nodes contained in the shortest path between 'Tokyo' and 'Dublin'.

Characteristic path length
Let’s assume we have a fully connected graph. The characteristic path length is defined as the 

average of all the shortest path lengths between all possible pairs of nodes. If 𝑙𝑙𝑖𝑖 is the average 

path length between node i and all the other nodes, the characteristic path length is computed 

as follows: 1𝑞𝑞𝑞𝑞𝑞 𝑞 𝑞𝑞 ∑ 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Here, V is the set of nodes in the graph, and q = |V| represents its order. This equation  

calculates the average distance across the entire network by summing the shortest path lengths 

from each node to every other node and normalizing it by the total number of pairs, q(q–1). The  

characteristic path length is a crucial measure of how efficiently information spreads across a 

network. Networks with shorter characteristic path lengths facilitate quick information transfer, 

thereby reducing communication costs. This concept is particularly important in fields such as 

social network analysis, where understanding the speed of information dissemination can provide 

insights into network dynamics. Characteristic path length can be computed through NetworkX 

using the following function:

nx.average_shortest_path_length(G)
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This should give us the following number, quantifying the average shortest path length:

2.1904761904761907

In the following figure, two examples of graphs are depicted. As observable, fully connected 

graphs have a lower average shortest path length compared to circular graphs. Indeed, in a fully 

connected graph, the number of edges to traverse to reach a node from another is, on average, 

less than the one in a circular graph, where multiple edges need to be traversed.

Figure 1.15: Characteristic path length of a fully connected graph (left) and a circular graph 
(right)

Notice that this metric cannot always be defined since it is not possible to compute a path among 

all the nodes in disconnected graphs. For this reason, network efficiency is also widely used.

Global and local efficiency
Global efficiency is the average of the inverse shortest path length for all pairs of nodes. Such a 

metric can be seen as a measure of how efficiently information is exchanged across a network. 

Consider that 𝑙𝑙𝑖𝑖𝑖𝑖 is the shortest path between a node i and a node j. The network efficiency is 

defined as follows: 𝐸𝐸𝐸𝐸𝐸𝐸𝑔𝑔 =  1𝑞𝑞𝑞𝑞𝑞 𝑞 𝑞𝑞 ∑ 1𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

The contribution to the efficiency for pairs of disconnected nodes is 0, such that disconnected 

pairs can be dropped from the summation above.
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Efficiency has a maximum value of 1 when a graph is fully connected, while it has a minimum value 

of 0 for completely disconnected graphs. Intuitively, the shorter the path, the lower the measure.

The local efficiency of a node can be computed by considering only the neighborhood of the node 

in the calculation, without the node itself. In the formula, 𝑁𝑁(𝑖𝑖) is the neighborhood of the node i 

and 𝑞𝑞𝑖𝑖 = |𝑁𝑁(𝑖𝑖)|  represents the number of neighbors of node i. The local coefficient is computed as:𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 =  1𝑞𝑞𝑖𝑖(𝑞𝑞𝑖𝑖 − 1) ∑ 1𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Global efficiency is computed in NetworkX using the following command:

nx.global_efficiency(G)

The output should be as follows:

0.6111111111111109

Average local efficiency is computed in NetworkX using the following command:

nx.local_efficiency(G)

The output should be as follows:

0.6666666666666667

In the following figure, two examples of graphs are depicted. As observed, a fully connected graph 

on the left presents a higher level of efficiency compared to a circular graph on the right. In a fully 

connected graph, each node can be reached from any other node in the graph, and information is 

exchanged rapidly across the network. However, in a circular graph, several nodes should instead 

be traversed to reach the target node, making it less efficient:

Figure 1.16: Global efficiency of a fully connected graph (left) and a circular graph (right)
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Integration metrics describe the connection among nodes. However, more information about the 

presence of groups can be extracted by considering segregation metrics.

Segregation metrics
In this section, some of the most common segregation metrics will be described.

Clustering coefficient
The clustering coefficient is a measure of how closely nodes are grouped together. It is defined as 

the fraction of triangles (complete subgraph of three nodes and three edges) around a node and is 

equivalent to the fraction of the node’s neighbors that are neighbors of each other. In the formula, 

let 𝑘𝑘𝑖𝑖 be the number of neighbors of a node i and let 𝐸𝐸𝑖𝑖 be the number of edges that exist between 

these 𝑘𝑘𝑖𝑖 neighbors. So 𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖 − 1) will be the maximum possible number of edges that could exist 

among the neighbors of node 𝑖. The local clustering coefficient can then be calculated as follows:𝐶𝐶𝑖𝑖 = 2𝐸𝐸𝑖𝑖𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖 − 1)
Therefore, the global clustering coefficient is computed by averaging the clustering coefficients 

for all nodes:

𝐶𝐶 𝐶 1𝑞𝑞  ∑ 𝐶𝐶𝑖𝑖𝑞𝑞
𝑖𝑖𝑖𝑖 

The global clustering coefficient is computed in networkx using the following command:

nx.average_clustering(G)

This should output the following:

0.6666666666666667

The local clustering coefficient is computed in networkx using the following command:

nx.clustering(G)

This should output the following:

{1: 1.0,

2: 1.0,

3: 0.3333333333333333,

4: 0,
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5: 0.3333333333333333,

6: 1.0,

7: 1.0}

The output is a Python dictionary containing, for each node (identified by the respective key), 

the corresponding value. In the graph shown in Figure 1.17, two clusters of nodes can be easily 

identified. By computing the clustering coefficient for each single node, it can be observed that 

Rome has the lowest value. Tokyo and Moscow, as well as Paris and Dublin, are instead very well 

connected within their respective groups (notice the size of each node is drawn proportionally to 

each node’s clustering coefficient). The graph can be seen in the following figure:

Figure 1.17: Local clustering coefficient representation

Modularity
Modularity was designed to quantify the division of a network into aggregated sets of highly  

interconnected nodes, commonly known as modules, communities, groups, or clusters. The main 

idea is that networks having high modularity will show dense connections within the module 

and sparse connections between modules.

Consider a social network such as Reddit: members of communities related to video games 

tend to interact much more with other users in the same community, talking about recent news,  

favorite consoles, and so on. However, they will probably interact less with users talking about 

fashion. Differently from many other graph metrics, modularity is often computed by means of 

optimization algorithms. 
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We will discuss this metric in more detail in Chapter 6, Solving Common Graph-Based Machine 

Learning Problems, when discussing the algorithms used for community extractions and iden-

tifications in more depth. For now, it is sufficient to understand that high modularity indicates 

a strong community structure, where many connections exist within communities and fewer 

connections exist between them. Low modularity, instead, suggests that the network does not 

have a strong community structure (we can say that the distribution of the edges is more random).

Modularity in NetworkX is computed using the modularity function of the networkx.algorithms.

community module, as follows:

import networkx.algorithms.community as nx_comm

nx_comm.modularity(G, communities=[{1,2,3}, {4,5,6,7}])

Here, the second argument—communities—is a list of sets, each representing a partition of the 

graph. The output should be as follows:

0.3671875

Segregation metrics help to understand the presence of groups. However, each node in a graph 

has its own importance. To quantify this, we can use centrality metrics, which are discussed in 

the next sections.

Centrality metrics
In this section, some of the most common centrality metrics will be described. Centrality  

metrics are extremely useful for identifying the most relevant nodes in a network. As a result, these  

quantities may be the most used metrics when filtering and targeting nodes and edges (e.g., 

finding influencers, critical points of failures, etc.).

Degree centrality
One of the most common and simple centrality metrics is the degree centrality metric. This is 

directly connected with the degree of a node, measuring the number of incident edges on a certain 

node i.

Intuitively, the more a node is connected to another node, the more its degree centrality will 

assume high values. Note that if a graph is directed, the in-degree centrality and out-de-

gree centrality should be considered for each node, related to the number of incoming and  

outcoming edges, respectively. This number is then normalized by the graph’s size to obtain a num-

ber between 0 and 1. Degree centrality is computed in NetworkX by using the following command:

nx.degree_centrality(G)
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The output should be as follows:

{1: 0.3333333333333333, 2: 0.3333333333333333, 3: 0.5, 4: 
0.3333333333333333, 5: 0.5, 6: 0.3333333333333333, 7: 0.3333333333333333}

Closeness centrality
The closeness centrality metric attempts to quantify how close a node is (well connected) to other 

nodes. More formally, it refers to the average distance of a node i to all other nodes in the network. 

If 𝑙𝑙𝑖𝑖𝑖𝑖 is the shortest path between node i and node j, the closeness centrality 𝑐𝑐𝑗𝑗 is defined as follows:𝑐𝑐𝑗𝑗 = 𝑁𝑁 𝑁 𝑁∑ 𝑙𝑙𝑖𝑖𝑖𝑖 

Here, V is the set of nodes in the graph. Closeness centrality can be computed in NetworkX using 

the following command:

nx.closeness_centrality(G)

The output should be as follows:

{1: 0.4, 2: 0.4, 3: 0.5454545454545454, 4: 0.6, 5: 0.5454545454545454, 6: 
0.4, 7: 0.4}

Betweenness centrality
The betweenness centrality metric evaluates how much a node acts as a bridge between other 

nodes. Even if a node has a low degree or closeness centrality, it can still be strategically connected 

because of a high betweenness centrality, if it helps to keep the whole network connected.

If 𝐿𝐿𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡 is the total number of shortest paths between node w and node j and Lwj(i) is the  

total number of shortest paths between w and j passing through node i, then the betweenness  

centrality is defined as follows: 𝑏𝑏𝑖𝑖 = ∑ 𝐿𝐿𝑤𝑤𝑤𝑤(𝑖𝑖)𝐿𝐿𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 

If we observe the formula, we can notice that the higher the number of shortest paths passing 

through node i, the higher the value of the betweenness centrality. Betweenness centrality is 

computed in networkx by using the following command:

nx.betweenness_centrality(G)
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The output should be as follows:

{1: 0.0, 2: 0.0, 3: 0.5333333333333333, 4: 0.6, 5: 0.5333333333333333, 6: 
0.0, 7: 0.0}

In Figure 1.18, we illustrate the difference between degree centrality, closeness centrality, and  

betweenness centrality. Milan and Naples have the highest degree centrality. Rome has the 

highest closeness centrality since it is the closest to any other node. It also shows the highest  

betweenness centrality because of its crucial role in connecting the two visible clusters and  

keeping the whole network connected.

You can see the differences here:

Figure 1.18: Degree centrality (left), closeness centrality (center), and betweenness centrality 
(right)

Finally, we will mention resilience metrics, which enable us to measure the vulnerability of a 

graph—that is, how susceptible a network is to disconnection or functional failure when certain 

nodes are removed.

Resilience metrics
There are several metrics that measure a network’s resilience. Assortativity is one of the most used.

Assortativity coefficient
Assortativity is used to quantify the tendency of nodes being connected to similar nodes, which 

can impact the network’s ability to withstand failures or “attacks.” High assortativity indicates 

that nodes of similar degrees are more likely to be connected, leading to a resilient structure 

where the failure of some nodes does not significantly disrupt overall connectivity. Conversely, 

networks with low assortativity tend to have nodes connecting with dissimilar degrees, making 

them more vulnerable to targeted attacks on high-degree nodes, as shown in the figure below:
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Figure 1.19: Disassortative (left) and assortative (right) graphs

There are several ways to measure such correlations. One of the most used methods is the  

Pearson correlation coefficient between the degrees of directly connected nodes (nodes on two  

opposite ends of a link). The coefficient assumes positive values when there is a correlation  

between nodes of a similar degree, while it assumes negative values when there is a correlation 

between nodes of a different degree. Assortativity using the Pearson correlation coefficient is 

computed in NetworkX by using the following command:

nx.degree_pearson_correlation_coefficient(G)

The output should be as follows:

-0.6

Social networks are mostly assortative. However, the so-called influencers (famous singers, football 

players, fashion bloggers, etc.) tend to be followed (incoming edges) by several standard users, 

while tending to not be connected with each other and showing disassortative behavior.

It is important to note that the properties previously presented are just a subset of the many  

metrics available for describing graphs. We have chosen to focus on these specific metrics because 

they offer foundational insights into graph theory and are frequently used in practical applications. 

A wider set of metrics and algorithms can be found at https://networkx.org/documentation/

stable/reference/algorithms/.

https://networkx.org/documentation/stable/reference/algorithms/
https://networkx.org/documentation/stable/reference/algorithms/
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Hands-on examples
Now that we understand the basic concepts and notions about graphs and network analysis, it is 

time to dive into some practical examples that will help us start to put into practice the general 

concepts we have learned so far. In this section, we will present some examples and toy problems 

that are generally used to study the properties of networks, as well as benchmark performances 

and the effectiveness of networks’ algorithms.

Simple graphs
We will start by looking at some very simple examples of networks. Fortunately, networkx already 

comes with a number of graphs already implemented, ready to be used and played with. Let’s 

start by creating a fully connected undirected graph with n nodes, as follows:

complete = nx.complete_graph(n=7)

This has 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 = 21 edges and a clustering coefficient C=1. Although fully connected graphs are 

not very interesting on their own, they represent a fundamental building block that may arise 

within larger graphs. A fully connected subgraph of n nodes within a larger graph is generally 

referred to as a clique of size n.

A clique, C, in an undirected graph is defined as the subset of its vertices, 𝐶𝐶 𝐶 𝐶𝐶, such that every 

two distinct vertices in the subset are adjacent. This is equivalent to the condition that the induced 

subgraph of G induced by C is a fully connected graph.

Cliques represent one of the basic concepts in graph theory and are often also used in mathemat-

ical problems where relationships need to be encoded. Besides, they also represent the simplest 

unit when constructing more complex graphs. On the other hand, the task of finding cliques of 

a given size n in larger graphs (clique problem) is of great interest and it can be shown that it 

is a nondeterministic polynomial-time complete (NP-complete) problem, often studied in  

computer science. In other words, finding a solution is computationally difficult, and the required 

time increases exponentially as the size of the graph increases.

Some simple examples of networkx graphs can be seen in the following figure:
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Figure 1.20: Simple examples of graphs with networkx: (left) fully connected graph; (center) 
lollipop graph; (right) barbell graph

In Figure 1.20, we show a fully connected graph (left). These graphs represent well-integrated 

groups, such as small teams in an organization, where every member interacts with every other 

member. This graph can help analyze communication patterns. It also contains two other simple 

examples containing cliques that can be easily generated with networkx, outlined as follows:

•	 A lollipop graph formed by a clique of size m and a branch of n nodes, as shown in the 

following code snippet:

lollipop = nx.lollipop_graph(m=7, n=3)

•	 A barbell graph formed by two cliques of size m1 connected by a path of size m2, which 

resembles the sample graph we used previously to characterize some of the global and 

local properties. The code to generate this is shown in the following snippet:

barbell = nx.barbell_graph(m1=7, m2=4)
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Such simple graphs are basic building blocks that can be used to generate more complex networks 

by combining them. Merging subgraphs is very easy with NetworkX and can be done with just 

a few lines of code, as shown in the following code snippet, where the three graphs are merged 

into a single graph and some random edges are placed to connect them:

def get_random_node(graph):

    return np.random.choice(graph.nodes)

allGraphs = nx.compose_all([complete, barbell, lollipop])

allGraphs.add_edge(get_random_node(lollipop), get_random_node(lollipop))

allGraphs.add_edge(get_random_node(complete), get_random_node(barbell))

Other very simple graphs (that can then be merged and played around with) can be found at 
https://networkx.org/documentation/stable/reference/generators.html#module-

networkx.generators.classic.

Generative graph models
Although creating simple subgraphs and merging them is a way to generate new graphs of  

increasing complexity, networks may also be generated by means of probabilistic models and/or 

generative models that let a graph grow by itself. Such graphs usually share interesting properties 

with real networks and have long been used to create benchmarks and synthetic graphs, especially 

in times when the amount of data available was not as overwhelming as today. Here, we present 

some examples of random generated graphs, briefly describing the models that underlie them.

Watts and Strogatz (1998)
This model was introduced by the authors to study the behavior of small-world networks. A 

small-world network is characterized by a high clustering coefficient and a short average path 

length, meaning that most nodes can be reached from any other node through a small number 

of intermediate connections. This structure often mirrors real-world social networks, where  

individuals are typically connected through a few mutual acquaintances, allowing for rapid 

information dissemination. The graph is generated by first displacing n nodes in a ring and  

connecting each node with its k neighbors. Each edge of such a graph then has a probability p of 

being rewired to a randomly chosen node. By ranging p, the Watts and Strogatz model allows a 

shift from a regular network (p=0) to a completely random network (p=1). In between, graphs 

exhibit small-world features; that is, they tend to bring this model closer to social network graphs. 

These kinds of graphs can be easily created with the following command:

graph = nx.watts_strogatz_graph(n=20, k=5, p=0.2)

https://networkx.org/documentation/stable/reference/generators.html#module-networkx.generators.classic
https://networkx.org/documentation/stable/reference/generators.html#module-networkx.generators.classic
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An illustration of a graph before and after rewiring can be found below:

Figure 1.21: A sample graph before (left) and after (right) rewiring with p=0.2

Barabási-Albert (1999)
The model proposed by Albert and Barabási is based on a generative model that allows the creation 

of random scale-free networks by using a preferential attachment schema, where a network is 

created by progressively adding new nodes and attaching them to already existing nodes, with 

a preference for nodes that have more neighbors. Mathematically speaking, the underlying idea 

of this model is that the probability for a new node to be attached to an existing node i depends 

on the degree of the i-th node, 𝑘𝑘𝑖𝑖, and the sum of the degrees of all existing nodes in the network, ∑𝑘𝑘𝑗𝑗, according to the following formula: 𝑝𝑝𝑖𝑖 = 𝑘𝑘𝑖𝑖∑𝑘𝑘𝑗𝑗
Thus, nodes with a large number of edges (hubs) tend to develop even more edges, whereas 

nodes with few links are unlikely to develop other links (periphery). Networks generated by this 

model exhibit a power-law distribution for the connectivity (that is, degree) between nodes. Such 

a behavior is also found in real networks, such as the World Wide Web (WWW) network and 

the actor collaboration network (connections between actors based on their collaborations in 

films and television shows).
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Interestingly, this model illustrates that it is the popularity of a node (how many edges it already 

has) rather than its intrinsic node properties that influences the creation of new connections. The 

initial model has then been extended (and this is the version that is available on NetworkX) to 

also allow the preferential attachment of new edges or the rewiring of existing edges.

The Barabási-Albert model is illustrated in the following figure:

Figure 1.22: Barabási-Albert model (left) with 20 nodes; distribution of connectivity with 
n=100.000 nodes (right), showing the scale-free power law distribution

In Figure 1.22, we showed an example of the Barabási-Albert model for a small network, 

where you can already observe the emergence of hubs (on the left), as well as the probability  

distribution of the degree of the nodes, which exhibits a scale-free power-law behavior (on the 

right). The preceding distribution can easily be replicated in networkx, as in the following code 

snippet, where n and m are the number of nodes and edges, respectively, p is the probability 

value for adding an edge between existing nodes, and q is the probability value of the rewiring 

of existing edges (with p + q < 1):

ba_model = nx.extended_barabasi_albert_graph(n=100,m=1,p=0,q=0)

degree = dict(nx.degree(ba_model)).values()

bins = np.round(np.logspace(np.log10(min(degree)), np.log10(max(degree)), 
10))

cnt = Counter(np.digitize(np.array(list(degree)), bins))
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Data resources for network analysis
Digitalization has profoundly changed our lives, and today, any activity, person, or process  

generates data, providing a huge amount of information to be drilled into, analyzed, and used 

to promote data-driven decision-making. A few decades ago, it was hard to find datasets ready 

to be used to develop or test new algorithms. On the other hand, there exist today plenty of  

repositories that provide us with datasets, even of fairly large dimensions, to be downloaded and 

analyzed. These repositories, where people can share datasets, also provide a benchmark where 

algorithms can be applied, validated, and compared with each other.

In this section, we will briefly go through some of the main repositories and file formats used in 

network science, in order to provide you with all the tools needed to import datasets—of different 

sizes—to analyze and play around with.

In such repositories, you will find network datasets coming from some of the common areas 

of network science, such as social networks, biochemistry, dynamic networks, documents, 

co-authoring and citation networks, and networks arising from financial transactions. In Part 

3, Advanced Applications of Graph Machine Learning, we will discuss some of the most common 

types of networks (social networks, graphs arising when processing corpus documents, and  

financial networks) and analyze them more thoroughly by applying the techniques and algorithms  

described in Part 2, Machine Learning on Graphs.

Also, networkx already comes with some basic (and very small) networks that are generally 

used to explain algorithms and basic measures, which can be found at https://networkx.org/

documentation/stable/reference/generators.html#module-networkx.generators.social. 

These datasets are, however, generally quite small. For larger datasets, refer to the repositories 

we present next.

Network Repository
Network Repository is surely one of the largest repositories of network data (http://

networkrepository.com/) with several thousand different networks, featuring users and  

donations from all over the world and top-tier academic institutions. If a network dataset is freely 

available, chances are that you will find it there. Datasets are classified into about 30 domains, 

including biology, economics, citations, social network data, industrial applications (energy, 

road), and many others. Besides providing the data, the website also provides a tool for interactive  

visualization, exploration, and comparison of datasets, and we suggest you check it out and 

explore it.

https://networkx.org/documentation/stable/reference/generators.html#module-networkx.generators.social
https://networkx.org/documentation/stable/reference/generators.html#module-networkx.generators.social
http://networkrepository.com/
http://networkrepository.com/
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The data in Network Repository is generally available under the Matrix Market Exchange Format 

(MTX) file format. The MTX file format is basically a file format for specifying dense or sparse 

matrices, real or complex, via readable text files (American Standard Code for Information  

Interchange, or ASCII). For more details, please refer to http://math.nist.gov/MatrixMarket/

formats.html#MMformat.

A file in MTX format can be easily read in Python using SciPy. Some of the files we download-

ed from Network Repository seemed slightly corrupted and required a minimal fix on a 10.15.2 

macOS system. In order to fix them, just make sure the header of the file is compliant with the 

format specifications—that is, with a double % and no spaces at the beginning of the line, as in 

the following line:

%%MatrixMarket matrix coordinate pattern symmetric

Matrices should be in coordinate format. In this case, the specification points also to an  

unweighted, undirected graph (as understood by pattern and symmetric). Some of the files have 

some comments after the first header line, which are preceded by a single %.

As an example, we consider the Astro Physics (ASTRO-PH) collaboration network. The graph is 

generated using all the scientific papers available from the e-print arXiv repository published in 

the Astrophysics category in the period from January 1993 to April 2003. The network is built by 

connecting (via undirected edges) all the authors that co-authored a publication, thus resulting in 

a clique that includes all authors of a given paper. The code to generate the graph can be seen here:

from scipy.io import mmread

adj_matrix = mmread("ca-AstroPh.mtx")

graph = nx.from_scipy_sparse_matrix(adj_matrix)

The dataset has 17,903 nodes, connected by 196,072 edges. Visualizing so many nodes cannot be 

done easily, and even if we were to do it, it might not be very informative, as understanding the 

underlying structure would not be very easy with so much information. However, we can get 

some insights by looking at specific subgraphs, as we will do next.

First, we can start by computing some basic properties we described earlier and put them into a 

pandas DataFrame for our convenience to later use, sort, and analyze. The code to accomplish 

this is illustrated in the following snippet (it may require several minutes to complete):

stats = pd.DataFrame({

    "centrality": nx.centrality.betweenness_centrality(graph),

    "C_i": nx.clustering(graph),

http://math.nist.gov/MatrixMarket/formats.html#MMformat
http://math.nist.gov/MatrixMarket/formats.html#MMformat
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    "degree": nx.degree(graph)

})

We can easily find out that the node with the largest degree centrality is the one with ID 6933, 

which has 503 neighbors (surely a very popular and important scientist in astrophysics!), as 

illustrated in the following code snippet:

neighbors = [n for n in nx.neighbors(graph, 6933)]

Of course, also plotting its ego network (the node with all its neighbors) would still be a bit messy. 

One way to produce some subgraphs that can be plotted is by sampling (for example, with a 0.1 

ratio) its neighbors in three different ways: random (sorting by index is a sort of random sorting), 

selecting the most central neighbors, or selecting the neighbors with the largest C_i values. The 

code to accomplish this is shown in the following code snippet:

sampling = 0.1 # this represents 10% of the neighbors

nTop = round(len(neighbors)*sampling)

idx = {

    "random": stats.loc[neighbors].sort_index().index[:nTop],

    "centrality": stats.loc[neighbors]\

         .sort_values("centrality", ascending=False)\

         .index[:nTop],

    "C_i": stats.loc[neighbors]\

         .sort_values("C_i", ascending=False)\

         .index[:nTop]

}

We can then define a simple function for extracting and plotting a subgraph that includes only 

the nodes related to certain indices, as shown in the following code snippet:

def plotSubgraph(graph, indices, center = 6933):

    nx.draw_kamada_kawai(

        nx.subgraph(graph, list(indices) + [center])

    )

Using the function above, we can plot the different subgraphs. Each subgraph will be obtained 

by filtering the ego network using three different criteria, based on random sampling, centrality, 

and the clustering coefficient. An example is provided here:

plotSubgraph(graph, idx["random"])
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In Figure 1.23, we compare these results where the other networks have been obtained by changing 

the key value to centrality and C_i. The random representation seems to show some emerging 

structure with separated communities. The graph with the most central nodes clearly shows an 

almost fully connected network, possibly made up of all full professors and influential figures in 

astrophysics science, publishing on multiple topics and collaborating frequently with each other. 

Finally, the last representation, on the other hand, highlights some specific communities, possibly 

connected with a specific topic, by selecting the nodes that have a higher clustering coefficient. 

These nodes might not have a large degree of centrality, but they represent specific topics very 

well. You can see examples of the ego subgraph here:

Figure 1.23: Examples of the ego subgraph for the node that has the largest degree in the 
ASTRO-PH dataset. Neighbors are sampled with a ratio=0.1 random sampling (left); nodes 
with largest betweenness centrality (center); nodes with largest clustering coefficient (right)

Another option to visualize this in NetworkX could also be to use the Gephi software, which allows 

for fast filtering and visualizations of graphs. In order to do so, we need to first export the data 

in Graph Exchange XML Format (GEXF) (which is a file format that can be imported in Gephi), 

as follows:

nx.write_gext(graph, "ca-AstroPh.gext")

Once data is imported in Gephi, with a few filters (by centrality or degree) and some computations 

(modularity), you can easily do plots as nice as the one shown in Figure 1.24, where nodes have 

been colored using modularity in order to highlight clusters. Coloring also allows us to easily 

spot nodes that connect the different communities and that therefore have large betweenness.
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Some of the datasets in Network Repository may also be available in the EDGE file format 

(for instance, the citation networks). The EDGE file format slightly differs from the MTX file  

format, although it represents the same information. Probably the easiest way to import such files 

into NetworkX is to convert them by simply rewriting its header. Take, for instance, the Digital  

Bibliography and Library Project (DBLP) citation network.

Figure 1.24: Example of the visualization ASTRO-PH dataset with Gephi. Nodes are filtered by 
degree centrality and colored by modularity class; node sizes are proportional to the value 

of the degree

The header of the file in this case reads:

% asym unweighted

% 49743 12591 12591
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This can be easily converted to comply with the MTX file format by replacing these lines with 

the following code:

%%MatrixMarket matrix coordinate pattern general

12591 12591 49743

Then, you can use the import functions described previously.

Stanford Large Network Dataset Collection
Another valuable source of network datasets is the website of the Stanford Network  

Analysis Platform (SNAP) (https://snap.stanford.edu/index.html), which is a general-purpose  

network analysis library that was written in order to handle even fairly large graphs, with  

hundreds of millions of nodes and billions of edges. It is written in C++ to achieve top  

computational performance, but it also features interfaces with Python in order to be imported 

and used in native Python applications.

Although networkx is currently the main library to study networkx in Python, SNAP or other 

libraries (more on this shortly) can be orders of magnitude faster than networkx, and they may 

be used in place of networkx for tasks that require higher performance. On the SNAP website, you 

will find a specific web page for Biomedical Network Datasets (https://snap.stanford.edu/

biodata/index.html), besides other more general networks (https://snap.stanford.edu/data/

index.html), covering similar domains and datasets as Network Repository, described previously.

Data is generally provided in a text file format containing a list of edges. Reading such files can 

be done with networkx in one code line, using the following command:

g = nx.read_edgelist("amazon0302.txt")

Some graphs might have extra information, other than about edges. Extra information is included 

in the archive of the dataset as a separated file—for example, where some metadata of the nodes 

is provided and is related to the graph via the id node.

Graphs can also be read directly using the SNAP library and its interface via Python. If you have a 

working version of SNAP on your local machine, you can easily read the data as follows:

from snap import LoadEdgeList, PNGraph

graph = LoadEdgeList(PNGraph, "amazon0302.txt", 0, 1, '\t')

Keep in mind that, at this point, you will have an instance of a PNGraph object of the SNAP  

library, and you can’t directly use NetworkX functionalities on this object. If you want to use some  

NetworkX functions, you first need to convert the PNGraph object to a networkx object. 

https://snap.stanford.edu/index.html
https://snap.stanford.edu/biodata/index.html
https://snap.stanford.edu/biodata/index.html
https://snap.stanford.edu/data/index.html
https://snap.stanford.edu/data/index.html
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You can do that by creating a new graph and adding nodes and edges from PNGraph by using the 

networkx functionalities we have seen before.

Open Graph Benchmark
This is the most recent update (dated May 2020) in the graph benchmark landscape, and this 

repository is expected to gain increasing importance and support in the coming years. The Open 

Graph Benchmark (OGB) has been created to address one specific issue: current benchmarks 

are actually too small compared to real applications to be useful for ML advances. On the one 

hand, some of the models developed on small datasets turn out to not be able to scale to large 

datasets, proving them unsuitable in real-world applications. On the other hand, large datasets 

also allow us to increase the capacity (complexity) of the models used in ML tasks and explore 

new algorithmic solutions (such as neural networks) that can benefit from a large sample size 

to be efficiently trained, allowing us to achieve very high performance. The datasets belong to 

diverse domains and they have been ranked on three different dataset sizes (small, medium, and 

large), where the small graphs, despite their name, already have more than 100,000 nodes and/or 

more than 1 million edges. Conversely, large graphs feature networks with more than 100 million 

nodes and more than 1 billion edges, facilitating the development of scalable models.

Besides the datasets, the OGB also provides, in a Kaggle fashion, an end-to-end ML pipeline 

that standardizes the data loading, experimental setup, and model evaluation. OGB creates a  

platform to compare and evaluate models against each other, publishing a leaderboard that allows 

tracking of the performance evolution and advancements on specific tasks of node, edge, and 

graph property prediction. For more details on the datasets and the OGB project, please refer to 

the following paper by Hu et al. (2021): https://arxiv.org/pdf/2005.00687.pdf.

Dealing with large graphs
When approaching a use case or an analysis, it is very important to understand how large the 

data we focus on is or will be in the future, as the dimension of the datasets may very well impact 

both the technologies we use and the analysis that we can do. As already mentioned, some of the 

approaches that have been developed on small datasets hardly scale to real-world applications 

and larger datasets, making them useless in practice.

When dealing with (possibly) large graphs, it is crucial to understand potential bottlenecks and 

limitations of the tools, technologies, and/or algorithms we use, assessing which part of our 

application/analysis may not scale when increasing the number of nodes or edges. Even more 

importantly, it is crucial to structure a data-driven application, however simple or at what early 

stage of the proof of concept (POC), in a way that would allow its scaling out in the future when 

data/users would increase, without rewriting the whole application.

https://arxiv.org/pdf/2005.00687.pdf
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Creating a data-driven application that resorts to graphical representation/modeling is a  

challenging task that requires a design and implementation that is a lot more complicated than 

simply importing NetworkX. In particular, it is often useful to decouple the component that 

processes the graph—the graph processing engine—from the one that allows querying and 

traversing the graph—the graph storage layer. We will further discuss these concepts in Chapter 

10, Building a Data-Driven Graph-Powered Application. Nevertheless, given the focus of the book 

on ML and analytical techniques, it makes sense to focus more on graph processing engines than 

on graph storage layers. We, therefore, find it useful at this stage to provide you with some of the 

technologies that are used for graph processing engines to deal with large graphs, crucial when 

scaling out an application.

In this respect, it is important to classify graph processing engines into two categories (that  

impact the tools/libraries/algorithms to be used), depending on whether the graph can fit a shared 

memory machine or requires distributed architectures to be processed and analyzed.

Note that there is no absolute definition of large and small graphs, but it also depends on the  

chosen architecture. Nowadays, thanks to the vertical scaling of infrastructures, you can find 

servers with random-access memory (RAM) larger than 1 terabyte (TB) (usually called fat 

nodes), and with tens of thousands of central processing units (CPUs) for multithreading in 

most cloud-provider offerings, although these infrastructures might not be economically viable. 

Even without scaling out to such extreme architectures, graphs with millions of nodes and tens 

of millions of edges can nevertheless be easily handled in single servers with ~100 gigabytes 

(GB) of RAM and ~50 CPUs.

Although networkx is a very popular, user-friendly, and intuitive library, when scaling out to 

such reasonably large graphs, it may not be the best available choice. NetworkX, being natively 

written in pure Python, which is an interpreted language, can be substantially outperformed by 

other graph engines fully or partly written in more performant programming languages (such 

as C++ and Julia) and that make use of multithreading, such as the following:

•	 SNAP (http://snap.stanford.edu/), which we have already seen in the previous section, 

is a graph engine developed at Stanford and is written in C++ with available bindings in 

Python.

•	 igraph (https://igraph.org/) is a C library and features bindings in Python, R, and 

Mathematica.

•	 graph-tool (https://graph-tool.skewed.de/), despite being a Python module, has core 

algorithms and data structures written in C++ and uses OpenMP parallelization to scale 

on multi-core architectures.

http://snap.stanford.edu/
https://igraph.org/
https://graph-tool.skewed.de/
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•	 NetworKit (https://networkit.github.io/) is also written in C++ with OpenMP boost 

for parallelization for its core functionalities, integrated into a Python module.

•	 LightGraphs (https://juliapackages.com/p/lightgraphs) is a library written in Julia 

that aims to mirror networkx functionalities in a more performant and robust library.

All the preceding libraries are valid alternatives to NetworkX when achieving better performance 

becomes an issue. Improvements can be very substantial, with speed-ups varying from 30 to 300 

times faster, with the best performance generally achieved by LightGraphs.

In the forthcoming chapters, we will mostly focus on NetworkX in order to provide a consistent 

presentation and provide you with basic concepts on network analysis. We want you to be aware 

that other options are available, as this becomes extremely relevant when pushing the edge from 

a performance standpoint.

Summary
In this chapter, we covered concepts such as graphs, nodes, and edges. We reviewed graph  

representation methods and explored how to visualize graphs. We also defined properties that are 

used to characterize networks or parts of them.

We went through a well-known Python library to deal with graphs, NetworkX, and learned 

how to use it to apply theoretical concepts in practice. We then ran examples and toy problems 

that are generally used to study the properties of networks, as well as benchmark performance 

and the effectiveness of network algorithms. We also provided you with some useful links to  

repositories where network datasets can be found and downloaded, together with some tips on 

how to parse and process them.

In the next chapter, we will go beyond defining notions of ML on graphs. We will learn how more 

advanced and latent properties can be automatically found by specific ML algorithms.

https://networkit.github.io/
https://juliapackages.com/p/lightgraphs




2
Graph Machine Learning

Machine learning is a subset of artificial intelligence that aims to provide systems with the 

ability to learn and improve from data. It has achieved impressive results in many different  

applications, especially where it is difficult or unfeasible to explicitly define rules to solve a specific 

task. For instance, we can train algorithms to recognize spam emails, translate sentences into other  

languages, recognize objects in an image, and so on.

In recent years, there has been an increasing interest in applying machine learning to graph- 

structured data. Graphs, composed of nodes and edges, naturally represent relationships and 

interactions in many real-world systems, making them a better choice in many scenarios where 

“traditional” machine learning models may overlook these important dependencies. For example, 

graph machine learning has found wide applications in recommendation systems, where the 

relationships between users and products (e.g., who bought or liked what) can be modeled as a 

graph, improving prediction accuracy. Similarly, graphs excel in areas like social network analysis, 

where the connections between individuals are vital for tasks such as community detection or 

predicting user behavior.

This chapter will first review some of the basic machine learning concepts. Then, an introduction 

to graph machine learning will be provided, with a particular focus on representation learning.

The following topics will be covered in this chapter:

•	 A refresher on machine learning

•	 What is machine learning on graphs and why is it important?

•	 A general taxonomy to navigate graph machine learning algorithms



Graph Machine Learning56

Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter02. Please refer to the Practical exercises section of 

Chapter 1, Getting Started with Graphs, for guidance on how to set up the environment to run the 

examples in this chapter, either using Poetry, pip, or Docker.

For more complex data visualization tasks provided in this chapter, Gephi (https://gephi.org/) 

may also be required. The installation manual is available at https://gephi.org/users/install/.

Understanding machine learning on graphs
Out of the branches of artificial intelligence, machine learning is the one that has attracted the 

most attention in recent years. It refers to a class of computer algorithms that automatically learn 

and improve their skills through experience without being explicitly programmed. Such an approach 

takes inspiration from nature. Imagine an athlete who faces a novel movement for the first time: 

they start slowly, carefully imitating the gesture of a coach, trying, making mistakes, and trying 

again. Eventually, they will improve, becoming more and more confident.

Basic principles of machine learning
How does this concept translate to machines? It is essentially an optimization problem. The 

goal is to find a mathematical model that is able to achieve the best possible performance on a  

particular task. Performance can be measured using a specific performance metric (also 

known as a loss function or cost function). In a common learning task, the algorithm is  

provided with data, possibly lots of it. The algorithm uses this data to iteratively make decisions or  

predictions for the specific task. At each iteration, decisions are evaluated using the loss function. The  

resulting error is used to update the model parameters in a way that, hopefully, means the model 

will perform better. This process is commonly called training.

More formally, let’s consider a particular task, T, and a performance metric, P, which allows us 

to quantify how well an algorithm is performing on T. According to Mitchell et al. (1997), an  

algorithm is said to learn from experience, E, if its performance at task T, measured by P, improves 

with experience E.

Machine learning algorithms fall into four main categories, known as supervised, unsupervised, 

semi-supervised, and reinforcement learning. These learning paradigms depend on the way data 

is provided to the algorithm and how performance is evaluated.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter02
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter02
https://gephi.org/
https://gephi.org/users/install/
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Supervised learning is the learning paradigm used when we know the answer to the problem. 

In this scenario, the dataset is composed of samples of pairs of the form <x,y>, where x is the 

input (for example, an image or voice signal) and y is the corresponding desired output (for 

example, what the image represents or what the voice is saying). The input variables are also 

known as features, while the output is usually referred to as labels, targets, or annotations. In  

supervised settings, performance is often evaluated using a distance function. This function  

measures the differences between the prediction and the expected target. According to the type of labels,  

supervised learning can be further divided as follows:

•	 Classification: Here, the labels are discrete and refer to the “class” the input belongs to. 

Examples of classification include determining what the object in a photo is and predicting 

whether an email is spam or not.

•	 Regression: The target is continuous here. Examples of regression problems include  

predicting the temperature in a building or predicting the selling price of any particular 

product.

Unsupervised learning differs from supervised learning since the answer to the problem is not 

known. In this context, we do not have any labels and only the inputs, <x>, are provided. The goal 

is thus deducing structures and patterns, attempting to find similarities or anomalies.

Discovering groups of similar examples (clustering) is one of these problems, as well as giving 

new representations of the data in a more compact and meaningful vector space.

In semi-supervised learning, the algorithm is trained using a combination of labeled and  

unlabeled data. Usually, to direct the research of structures present in the unlabeled input data, 

a limited amount of labeled data is used.

Reinforcement learning is used for training machine learning agents to make a sequence of  

decisions. The artificial intelligence algorithm faces a game-like situation, where the agent gets 

penalties or rewards based on the actions performed. The goal of the agent is to understand how 

to act in order to maximize rewards and minimize penalties.

Minimizing the error on the training data is, however, not enough. The keyword in  

machine learning is learning. It means that algorithms must be able to achieve the same level of  

performance even on unseen data. The most common way of evaluating the generalization  

capabilities of machine learning algorithms is to divide the dataset into two parts: the training set 

and the test set. The model is trained on the training set, where the loss function is computed and 

used to update the parameters. After training, the model’s performance is evaluated on the test set. 
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Moreover, when more data is available, the test set can be further divided into validation and 

test sets. The validation set is commonly used for assessing the model’s performance during 

training and is generally required when selecting the best model among several models, or  

families of models.

When training a machine learning algorithm, three situations can be observed:

•	 In the first situation, the model reaches a low level of performance over the training 

set. This situation is commonly known as underfitting, meaning that the model is not  

powerful enough to address the task.

•	 In the second situation, the model achieves a high level of performance over the  

training set but struggles with generalizing to testing data. This situation is known as  

overfitting. In this case, the model is simply memorizing the training data without actually  

understanding the true relations among the data instances.

•	 Finally, the ideal situation is when the model is able to achieve (possibly) the highest level 

of performance over both training and testing data.

A graphical representation of overfitting and underfitting is given by the risk curve shown in 

Figure 2.1. From the figure, it is possible to see how the performances on the training and test 

sets change according to the complexity of the model (the number of parameters to be fitted):

Figure 2.1: Risk curve describing the prediction error on training and test set error in the 
function of the model complexity (number of parameters of the model)
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Interestingly, a study by Belkin et al. (2019) introduced the concept of a “double descent” curve, 

which suggests that beyond the shown region of overfitting, there exists another regime with 

extremely high model complexity. In this regime, the model can perfectly fit the training data 

(achieving near-zero error) but counterintuitively, the test error begins to decrease again after the 

initial overfitting phase. This phenomenon challenges the traditional view of model complexity 

and generalization. However, for the purposes of this book and the examples we will cover, we will 

not reach this double descent regime. Thus, the classical behavior of the risk curve, as illustrated 

in Figure 2.1, remains valid for our discussion.

Figure 2.2: Double descent curve suggested by Belkin et al. (2019)

Overfitting is one of the main problems that affect machine learning practitioners. It can occur 

due to several reasons. Some of the reasons can be as follows:

•	 The dataset can be ill-defined or not sufficiently representative of the task. In this case, 

adding more data could help to mitigate the problem.

•	 The mathematical model used for addressing the problem is too powerful for the task. 

In this case, proper constraints can be added to the loss function in order to reduce the 

model’s “power.” Such constraints are called regularization terms.

The benefit of machine learning on graphs
Machine learning has achieved impressive results in many fields, becoming one of the most  

diffused and effective approaches in computer vision, pattern recognition, and natural  

language processing, among others. Several machine learning algorithms have been developed, 

each with its own advantages and limitations. Among those, it is worth mentioning regression 

algorithms (for example, linear and logistic regression), instance-based algorithms (for example,  

k-nearest neighbor or support vector machines), decision tree algorithms, Bayesian algorithms (for  

example, naïve Bayes), clustering algorithms (for example, k-means), and artificial neural  

networks.
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Despite their success, these traditional algorithms often work best when the data can be  

represented in a structured, grid-like form, such as images or tabular data, where each sample 

has no encoded relation to other samples. However, many real-world systems involve data that 

is inherently structured as a graph. Traditional algorithms may struggle to capture the complex 

interactions in such data, which can result in suboptimal performance.

This is where graph machine learning comes into play. By leveraging the inherent structure of 

graph data, these algorithms can model relationships between data points more effectively.

So, what is the reason behind the growing success of graph machine learning?

Graph machine learning enables us to automatically detect and interpret complex, latent patterns 

in graph-structured data—patterns that are often too intricate for traditional machine learning 

models to capture.

In particular, there has been an increasing interest in learning representations for graph- 

structured data and many machine learning algorithms have been developed for handling graphs. For  

example, we might be interested in determining the role of a protein in a biological interaction 

graph, predicting the evolution of a collaboration network, recommending new products to a user 

in a social network, and much more (we will discuss applications later in the book).

Due to their nature, graphs can be analyzed at different levels of granularity: at the node, edge, 

and graph level (the whole graph). Machine learning algorithms can extract and process features 

coming from nodes, edges, and graphs, as depicted in Figure 2.3.

Figure 2.3: Visual representation of the three different levels of granularity in graphs

For each of those levels, several types of machine learning tasks may be addressed and, as a 

consequence, specific algorithms may be used in each case. In the following list, we give some 

examples of machine learning problems that correspond to each of those levels:
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•	 Node level: Given a (possibly large) graph, G=(V, E), the goal is to classify each vertex, 𝑣𝑣 𝑣 𝑣𝑣, into the right class. In this setting, the dataset includes G and a list of pairs, <vi, yi>, 

where vi is a node of graph G and yi is the class to which the node belongs.

•	 Edge level: Given a (possibly large) graph, G=(V, E), the goal is to classify each edge, 𝑒𝑒 𝑒 𝑒𝑒
, into the right class. In this setting, the dataset includes G and a list of pairs, <ei, yi>, where 

ei is an edge of graph G and yi is the class to which the edge belongs. Another typical task 

for this level of granularity is link prediction, the problem of predicting the existence of 

a link between two existing nodes in a graph. The task of link prediction can in fact be 

seen as a particular case of edge classification, where the target yi is 1 if the edge ei exists, 

and 0 otherwise.

•	 Graph level: Given a dataset with m different graphs, the task is to build a machine learning 

algorithm capable of classifying a graph into the right class. We can then see this problem 

as a classification problem, where the dataset is defined by a list of pairs, <Gi, yi>, where 

Gi is a graph and yi is the class the graph belongs to.

In this section, we have discussed some basic concepts of machine learning. Moreover, we have 

enriched our description by introducing some of the common machine learning problems when 

dealing with graphs. Having those theoretical principles as a basis, we will now introduce some 

more complex concepts relating to graph machine learning.

The generalized graph embedding problem
In classical machine learning applications, a common way to process the input data is to build 

from a set of features, in a process called feature engineering, which is capable of giving a  

compact and meaningful representation of each instance in the dataset.

The dataset obtained from the feature engineering step will then be used as input for the  

machine learning algorithm. If this process usually works well for a large range of problems, it may 

not be the optimal solution when we are dealing with graphs. Indeed, due to their well-defined 

structure, finding a suitable representation capable of incorporating all the useful information 

might not be an easy task.

The first, and most straightforward, way of creating features capable of representing structur-

al information from graphs is the extraction of certain statistics. For instance, a graph could be  

represented by its degree distribution, efficiency, and all the metrics we described in the previous 

chapter.
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A more complex procedure consists of applying specific kernel functions or, in other cases,  

engineering-specific features that are capable of incorporating the desired properties into 

the final machine learning model. However, as you can imagine, this process could be really  

time-consuming and, in certain cases, the features used in the model could just represent a subset 

of the information that is really needed to get the best performance for the final model.

In the last decade, a lot of work has been done in order to define new approaches for creating 

meaningful and compact representations of graphs. The general idea behind all these approaches 

is to create algorithms capable of learning a good representation of the original dataset made of 

geometric relationships into a new vector space that reflects the structure of the original graph. 

We usually call the process of learning a good representation of a given graph representation 

learning or network embedding. We will provide a more formal definition as follows.

Representation learning (network embedding) is the task that aims to learn a mapping func-

tion, 𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑛𝑛, that transforms a discrete graph into n-dimensional vector space. The function 

f will be capable of performing a low-dimensional vector representation such that the properties 

(local and global) of graph G are preserved. The vectorial representation is also often referred to 

as embedding.

Once mapping f is learned, it could be applied to the graph and the resulting mapping could be 

used as a feature set for a machine learning algorithm. A graphical example of this process is 

visible in Figure 2.4:

Figure 2.4: Example of a workflow for a network embedding algorithm



Chapter 2 63

Mapping function f can also be applied in order to learn the vector representation for nodes and 

edges. As we already mentioned, machine learning problems on graphs could occur at different 

levels of granularity. As a consequence, different embedding algorithms have been developed in 

order to learn functions to generate the vectorial representation of nodes 𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑛𝑛 (also known 

as node embedding) or edges (𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑛𝑛) (also known as edge embedding). Those mapping 

functions try to build a vector space such that the geometric relationships in the new space reflect 

the structure of the original graph, node, or edges. As a result, we will see that graphs, nodes, or 

edges that are similar in the original space will also be similar in the new space.

Thus, in the space generated by the embedding function, similar structures will have a small 

Euclidean distance, while dissimilar structures will have a large Euclidean distance. In other 

words, similar structures will have representations that lie close to each other, while dissimilar  

structures will have representations that are far apart. It is important to highlight that while most 

embedding algorithms generate a mapping in Euclidean vector spaces, there has recently been 

an interest in non-Euclidean mapping functions.

Let’s now see a practical example of what an embedding space looks like, and how similarity can 

be seen in the new space. In the following code block, we show an example using a particular 

embedding algorithm known as Node to Vector (Node2Vec). We will describe how it works in 

Chapter 4, Unsupervised Graph Learning. At the moment, we will just say that the algorithm will 

map each node of graph G in a vector:

import networkx as nx

from node2vec import Node2Vec

import matplotlib.pyplot as plt

G = nx.barbell_graph(m1=7, m2=4)

node2vec = Node2Vec(G, dimensions=2)

model = node2vec.fit(window=10)

fig, ax = plt.subplots()

for x in G.nodes():

    v = model.wv.get_vector(str(x))

    ax.scatter(v[0],v[1], s=1000)

    ax.annotate(str(x), (v[0],v[1]), fontsize=12)

In the preceding code, we have done the following:

1.	 We generated a barbell graph (this was described in the previous chapter; see Figure 1.20 

in Chapter 1, Getting Started with Graphs).
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2.	 The Node2Vec embedding algorithm is then used in order to map each node of the graph 

in a vector of two dimensions.

3.	 Finally, the two-dimensional vectors generated by the embedding algorithm, representing 

the nodes of the original graph, are plotted.

The result is shown in Figure 2.5:

Figure 2.5: Application of the Node2Vec algorithm to a graph (left) to generate the embedding 
vector of its nodes (right)

From Figure 2.5, it is easy to see that nodes that have similar structures are close to each other 

and distant from nodes that have dissimilar structures. It is also interesting to observe how 

good Node2Vec is at discriminating group 1 from group 3. Since the algorithm uses neighboring 

information of each node to generate the representation, the clear discrimination of those two 

groups is possible. In a real-world example, we might think of the barbell graph as a social network, 

where the algorithm wants to recommend friends to a user. By generating node embeddings that 

capture the structural similarity between users (i.e., the patterns of friendships), the algorithm 

can identify users with similar network structures and suggest friend recommendations based 

on nearest neighbors’ information. For instance, in a platform like LinkedIn, Node2Vec could be 

used to suggest professional connections who have similar career trajectories or connections.

Another example on the same graph can be performed using the Edge to Vector (Edge2Vec) 

algorithm in order to generate a mapping for the edges for the same graph, G:

from node2vec.edges import HadamardEmbedder

edges_embs = HadamardEmbedder(keyed_vectors=model.wv)

fig, ax = plt.subplots()
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for x in G.edges():

    v = edges_embs[(str(x[0]), str(x[1]))]

    ax.scatter(v[0],v[1], s=1000)

    ax.annotate(str(x), (v[0],v[1]), fontsize=12)

In the preceding code, we have reused the same barbell graph used in the previous code snippet 

as well as the output of the Node2Vec algorithm to do the following:

1.	 The HadamardEmbedder embedding algorithm is applied to the result of the Node2Vec 

algorithm (keyed_vectors=model.wv) used in order to map each edge of the graph in a 

vector of two dimensions.

2.	 Finally, the two-dimensional vectors generated by the embedding algorithm, representing 

the nodes of the original graph, are plotted.

The results are shown in Figure 2.6:

Figure 2.6: Application of the Hadamard algorithm to a graph (left) to generate the embedding 
vector of its edges (right)

As for node embedding, in Figure 2.6, we reported the results of the edge embedding algorithm. 

From the figure, it is easy to see that the edge embedding algorithm clearly identifies similar edges. 

As expected, edges belonging to groups 1, 2, and 3 are clustered in well-defined and well-grouped 

regions. Moreover, the (6,7) and (10,11) edges, belonging to groups 4 and 5, respectively, are well 

clustered in specific groups. Referring back to the social network example, we might think of edge 

embedding as a useful way to predict future connections between users. 
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For instance, on platforms like Facebook, such an algorithm may be used to suggest new friend 

recommendations by identifying potential links between users who are likely to connect based 

on their current network structures.

Finally, we will provide an example of a Graph to Vector (Grap2Vec) embedding algorithm. 

This algorithm maps a single graph in a vector. As for the other examples, we will discuss this  

algorithm in more detail in Chapter 4, Unsupervised Graph Learning. In the following code block, 

we provide a Python example showing how to use the Graph2Vec algorithm in order to generate 

the embedding representation on a set of graphs:

import random

import matplotlib.pyplot as plt

from karateclub import Graph2Vec

n_graphs = 20

def generate_random():

    n = random.randint(6, 20)

    k = random.randint(5, n)

    p = random.uniform(0, 1)

    return nx.watts_strogatz_graph(n,k,p)

Gs = [generate_random() for x in range(n_graphs)]

model = Graph2Vec(dimensions=2)

model.fit(Gs)

embeddings = model.get_embedding()

fig, ax = plt.subplots(figsize=(10,10))

for i,vec in enumerate(embeddings):

    ax.scatter(vec[0],vec[1], s=1000)

    ax.annotate(str(i), (vec[0],vec[1]), fontsize=16)

In this example, the following has been done:

1.	 20 Watts-Strogatz graphs (described in the previous chapter) have been generated with 

random parameters.

2.	 We have then executed the graph embedding algorithm in order to generate a  

two-dimensional vector representation of each graph.

3.	 Finally, the generated vectors are plotted in their Euclidean space.
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The results of this example are shown in Figure 2.7:

Figure 2.7: Plot of two embedding vectors generated by the Graph2Vec algorithm applied to 
20 randomly generated Watts-Strogatz graphs (left). Extraction of two graphs with a large 
Euclidean distance (Graph 12 and Graph 8 at the top right) and two graphs with a low Euclid-

ean distance (Graph 14 and Graph 4 at the bottom right) is shown

As we can see from Figure 2.7, graphs with a large Euclidean distance, such as Graphs 12 and 8, have 

a different structure. The former is generated with the nx.watts_strogatz_graph(20,20,0.2857) 

parameter and the latter with the nx.watts_strogatz_graph(13,6,0.8621) parameter. In  

contrast, a graph with a low Euclidean distance, such as Graphs 14 and 8, has a similar structure. 

Graph 14 is generated with the nx.watts_strogatz_graph(9,9,0.5091) command, while Graph 

4 is generated with nx.watts_strogatz_graph(10,5,0.5659).

In this case, imagine decomposing a social network into unconnected subgraphs. This could 

be used to identify similar subnetworks, allowing the same advertising strategy to be applied 

across all of them.

In the scientific literature, a plethora of embedding methods have been developed, and many 

of them will be described in this book. These methods are usually classified into two main 

types: transductive and inductive, depending on the update procedure of the function when new  

samples are added. If new nodes are provided, transductive methods update the model (for example,  

re-train) to infer information about the nodes, while in inductive methods, models are  

expected to generalize to new nodes, edges, or graphs that were not observed during training. Which  

algorithm to choose strictly depends on the problem and use case you are aiming to address.
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The taxonomy of graph embedding machine learning 
algorithms
A wide variety of methods to generate a compact space for graph representation has been  

developed. In recent years, a trend has been observed of researchers and machine learning  

practitioners converging toward a unified notation to provide a common definition to describe 

such algorithms. In this section, we will be introduced to a simplified version of the taxonomy 

defined in the Machine Learning on Graphs: A Model and Comprehensive Taxonomy paper (https://

arxiv.org/abs/2005.03675; Chami et al., 2022).

In this formal representation, every graph, node, or edge embedding method can be described 

by two fundamental components, named the encoder (ENC) and the decoder (DEC). The ENC 

maps the input into the embedding space, while the DEC decodes structural information about 

the graph from the learned embedding (Figure 2.8).

The framework described in the paper follows an intuitive idea: if we are able to encode a graph 

such that the DEC is able to retrieve all the necessary information, then the embedding must 

contain a compressed version of all this information and can be used to downstream machine 

learning tasks:

Figure 2.8: Generalized ENC and DEC architecture for embedding algorithms

In many graph-based machine learning algorithms for representation learning, the decoder 

is usually designed to map pairs of node embeddings to a real value, usually representing the  

proximity (distance) of the nodes in the original graphs. For example, the decoder can be  

implemented such that, given the embedding representation of two nodes, zi=ENC(Vi) and 

zj=ENC(Vj), DEC(zi, zj)=1 if there is an edge connecting the two nodes zi and zj in the input graph. 

In practice, more effective proximity functions can be used to measure the similarity between nodes.

https://arxiv.org/abs/2005.03675
https://arxiv.org/abs/2005.03675
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Inspired by the general framework depicted in Figure 2.8, we will now provide a categorization 

of the various embedding algorithms into four main groups. Moreover, in order to help you to 

better understand this categorization, we shall provide simple code snapshots in pseudo-code. 

In our pseudo-code formalism, we denote G as a generic NetworkX graph, with graphs_list as 

a list of NetworkX graphs and model as a generic embedding algorithm:

•	 Shallow embedding methods: These methods are able to learn and return only the  

embedding values for the learned input data. Node2Vec, Edge2Vec, and Graph2Vec, which 

we previously discussed, are examples of shallow embedding methods. These methods 

are therefore transductive, and indeed, they can only return a vectorial representation of 

the data they learned during the fit procedure. It is not possible to obtain the embedding 

vector for unseen data. A typical way to use these methods is as follows:

model.fit(graphs_list)

embedding = model.get_embedding()[i]

In the code, a generic shallow embedding method is trained on a list of graphs (line 1). 

Once the model is fitted, we can only get the embedding vector of the ith graph belonging 

to graphs_list (line 2). Unsupervised and supervised shallow embedding methods will 

be described in Chapter 4, Unsupervised Graph Learning, and Chapter 5, Supervised Graph 

Learning, respectively.

•	 Graph autoencoding methods: These methods do not simply learn how to map the  

input graphs in vectors; they learn a more general mapping function, f(G), capable of also 

generating the embedding vector for unseen instances. Due to this, these methods are 

generally inductive and a typical way to use them is as follows:

model.fit(graphs_list)

embedding = model.get_embedding(G)

The model is trained on graphs_list (line 1). Once the model is fitted on the input train-

ing set, it is possible to use it to generate the embedding vector of a new unseen graph, G. 

Graph autoencoding methods will be described in Chapter 4, Unsupervised Graph Learning.

•	 Neighborhood aggregation methods: These algorithms can be used to extract  

embeddings at the graph level, where nodes are labeled with some properties. Moreover, 

as for the graph autoencoding methods, the algorithms belonging to this class are able 

to learn a general mapping function, f(G), and are capable of generating the embedding 

vector for unseen instances. This generally makes them inductive.
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•	 A nice property of those algorithms is the possibility to build an embedding space where 

not only the internal structure of the graph but also some external information, defined 

as properties of its nodes, is taken into account. For instance, with this method, we can 

have an embedding space capable of simultaneously identifying graphs with similar  

structures and different properties on nodes. Unsupervised and supervised neighborhood  

aggregation methods will be described in Chapter 4, Unsupervised Graph Learning, and 

Chapter 5, Supervised Graph Learning, respectively.

•	 Graph regularization methods: Methods based on graph regularization are slightly  

different from the ones listed in the preceding points. Here, we do not have a graph as input. 

Instead, the objective is to learn from a set of features by exploiting their “interactions” 

to regularize the process, either for inductive or transductive functions. In more detail, a 

graph can be constructed from the features by considering feature similarities. The main 

idea is based on the assumption that nearby nodes in a graph are likely to have the same 

labels. Therefore, the loss function is designed to constrain the labels to be consistent with 

the graph structure. For example, regularization might constrain neighboring nodes to 

share similar embeddings, in terms of their distance in the L2 norm. For this reason, the 

encoder only uses X-node features as input.

The algorithms belonging to this family learn a function, f(X), that maps a specific set of  

features (X) to an embedding vector. As for the graph autoencoding and neighborhood aggregation 

methods, this algorithm is also able to apply the learned function to new, unseen features. Graph 

regularization methods will be described in Chapter 5, Supervised Graph Learning.

For algorithms belonging to the group of shallow embedding methods and neighborhood  

aggregation methods, it is possible to define an unsupervised and supervised version. The ones  

belonging to graph autoencoding methods are suitable for unsupervised tasks, while the  

algorithms belonging to graph regularization methods are used in semi-supervised or supervised 

settings.

For unsupervised algorithms, the embedding of a specific dataset is performed only  

using the information contained in the input dataset, such as nodes, edges, or graphs. For the  

supervised setting, external information is used to guide the embedding process. That information is  

usually classed as a label, such as a pair, <Gi, yi>, that assigns a specific class to each graph. This  

process is more complex than the unsupervised one since the model tries to find the best vectorial  

representation in order to find the best assignment of a label to an instance. In order to clarify this 

concept, we can think, for instance, of the convolutional neural networks for image classification. 

During their training process, neural networks try to classify each image into the right class by 

performing the fitting of various convolutional filters at the same time. 
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The goal of those convolutional filters is to find a compact representation of the input data in 

order to maximize the prediction performances. The same concept is also valid for supervised 

graph embedding, where the algorithm tries to find the best graph representation in order to 

maximize the performance of a class assignment task.

From a more mathematical perspective, all these models are trained with a proper loss function. 

This function can be generalized using two terms:

•	 The first is used in supervised settings to minimize the difference between the prediction 

and the target

•	 The second is used to evaluate the similarity between the input graph and the one  

reconstructed after the ENC and DEC steps (which is the structure reconstruction error)

Formally, it can be defined as follows:

Loss = 𝛼𝛼𝛼𝛼sup(𝑦𝑦𝑦 𝑦𝑦) + 𝐿𝐿rec(𝐺𝐺𝐺 𝐺𝐺)
Here, 𝛼𝛼𝛼𝛼sup(𝑦𝑦𝑦 𝑦𝑦)  is the loss function in the supervised settings, and 𝛼𝛼𝛼 represents a regularization 

coefficient to tune the weight of the supervised loss. The model is optimized to minimize, for 

each instance, the error between the true 𝑦𝑦 class and the predicted 𝑦𝑦. 𝐿𝐿rec(𝐺𝐺𝐺 𝐺𝐺) class is the loss 

function representing the reconstruction error between the input graph (G) and the one obtained 

after the ENC + DEC process (𝐺𝐺). For unsupervised settings, we have the same loss but  𝛼𝛼 𝛼 𝛼 
since we do not have a target variable to use.

It is important to highlight the main role that these algorithms play when we try to solve a ma-

chine learning problem on a graph. They can be used passively in order to transform a graph into 

a feature vector suitable for a classical machine learning algorithm or for data visualization tasks. 

However, they can also be used actively during the learning process, where the machine learning 

algorithm finds a compact and meaningful solution to a specific problem.

Summary
In this chapter, we refreshed our knowledge of some basic machine learning concepts and  

discovered how they can be applied to graphs. We defined basic graph machine learning  

terminology with a particular focus on graph representation learning. A taxonomy of the main graph 

machine learning algorithms was presented in order to clarify what differentiates the various 

ranges of solutions developed over the years. Finally, practical examples were provided to begin 

understanding how the theory can be applied to practical problems.
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In the next chapter, we will look at the concepts of neural networks and neural networks applied 

to graphs. We will also present the principal frameworks for deep learning and deep learning for 

graphs in order to better understand the examples throughout the rest of this book.



3
Neural Networks and Graphs

The machine learning landscape of the last decade has seen the rise and explosion of a  

particular type of model that is extremely popular nowadays, and whose name is becoming very  

familiar even to non-technical people and practitioners: artificial neural networks (ANNs). Their  

versatility and potency have resulted in widespread adoption globally, including in the graph 

domain. Several frameworks have been developed to support their study, use, and development.

Although the first attempts to train ANNs date back to the early 1980s (with the seminal work 

of Paul Werbos and Geoffrey Hinton), their rise and success has come around only recently, 

thanks to the advances in computing power (via CPUs but mostly thanks to the highly efficient  

parallelization of computation enabled by GPUs) as well as the availability of large datasets. ANNs 

are in fact very general models, able to virtually learn any function, but as such, they need to be 

trained on vast amounts of data with a large computational cost. In return, however, they can 

achieve extremely high performances (even super-human) on very complex tasks.

Given such capabilities, recent research and advances in graph machine learning have  

therefore gone through the development of ANN-based algorithms. The integration between 

neural networks and graphs has generated a new class of algorithms that are commonly referred 

to as graph neural networks (GNNs), which – as you will see in the next chapters – will constitute 

an important backbone of this book.

In this chapter, we will introduce the basic concepts around neural networks and the libraries/

frameworks commonly used to deal with ANNs and GNNs.
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The following topics will be covered in this chapter:

•	 A refresher on ANNs and deep learning

•	 An overview of the most widely used deep learning frameworks

•	 An introduction to GNNs and the most widely used frameworks for deep learning on graphs

Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter03. Please refer to the Practical exercises section of 

Chapter 1, Getting Started with Graphs for guidance on how to set up the environment to run the 

examples of this chapter, either using Poetry, pip, or Docker.

Introduction to ANNs
Neural networks are formed by the integration of several simpler units, called neurons. A neuron is 

just a representation of the following relation between some inputs 𝑥𝑥𝑖𝑖 and one output 𝑦𝑦𝑦of the form

𝑦𝑦 𝑦 𝑦𝑦𝑎𝑎 (𝑏𝑏 𝑏𝑏𝑏𝑏𝑖𝑖 
𝑖𝑖  𝑥𝑥𝑖𝑖 )

Here:

•	 𝑏𝑏𝑏 is called the bias

•	 𝑊𝑊𝑖𝑖  is called the weights

•	 𝑓𝑓𝑎𝑎 is the activation functions

The earliest biological models of the neuron in animals and humans historically use a  

mathematical formulation similar to the one above, in which dendrites transmit incoming  

information from synapses, propagating and combining it in the neuron’s axons, which is then 

connected to the synapses of nearby, connected neurons. However, it is worth stressing that the 

formula above is an extremely simplified, naive, and (to some extent) poor representation of what 

really happens in our brains, lacking the more complex time-dependence behaviors produced by 

the propagation of electric signals. Over the years, researchers have come up with more realistic 

and complex models (i.e., generalized integrate-and-fire models) that can more closely capture 

the neuronal firing patterns observed in living creatures.

Nevertheless, it is extremely interesting to see what a combination of simple relations such as 

the one above can provide. Indeed, neural networks generally build upon this simplified neuron 

mode where the output of one neuron becomes the input of the following one. 

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter03
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter03
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This is represented using a diagram like the one shown in Figure 3.1 (this representation will also 

be used throughout this book), where you can see that neurons can be stacked in progressive and 

subsequent layers. An ANN is therefore specified by the set of biases, activation functions, and 

weights (also defining the connectivity) of its neurons.

As you can see from Figure 3.1, we use the notation  𝑊𝑊𝑖𝑖𝑖𝑖(𝑙𝑙) to define the weight connecting the 𝑖𝑖𝑖
neuron of the 𝑙𝑙𝑙layer to the 𝑗𝑗𝑗neuron of the 𝑙𝑙 𝑙 𝑙𝑙layer. Similarly, 𝑏𝑏𝑖𝑖(𝑙𝑙) represents the bias of the 𝑖𝑖𝑖 neuron of layer 𝑙𝑙𝑙. Although the activation functions could vary from neuron to neuron, it is 

common to choose a single function for each layer. Some common choices are sigmoid, rectified 

linear unit (ReLU), and softmax.

Figure 3.1: Simple schematic representation of a neural network

The various combinations and choices for the network’s parameters give rise to the most  

common neural network architectures nowadays. One can also pose some sort of constraints 

among the parameters, like imposing that some weights must have the same values (in other 

words, are shared between neural connections). This is quite common for kernels largely used in  

Convolutional Neural Networks (CNNs), where a given mask (of generally small size) carrying 

the same set of weights is applied to nearby neurons and rolled throughout the entire layer.

It is possible to demonstrate that such simple combinations of smaller units are – quite surprisingly 

– extremely powerful and general, as stated by the universal approximation theorem: a simple 

neural network made of just one hidden layer (besides the input and output layers) can represent 

any continuous function, provided it has a large enough number of units on its hidden layer. For 

some time, this theorem has provided support to people for building wide neural networks, thus 

characterized by a small number of large-neuron layers. However, experience and practice over 

the years have shown that deep neural networks, characterized by a very large number of layers 

stacked and connected on top of each other, are able to “learn” high-level features that allow the 

network to generalize better.
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Training neural networks
So far, we have just described the way that some inputs can be propagated through the neural 

network to produce one or multiple outputs. This would be of little use if we did not have a way 

to find a combination of the biases  𝑏𝑏𝑏 and weight  𝑊𝑊𝑖𝑖𝑖𝑖(𝑙𝑙) to produce meaningful outputs. Training 

a neural network refers to the process that allows us to optimize the values of the parameters to 

make the neural network able to carry out a specific task. And to do so, we need data. Often, a 

lot of data.

For the training data, in fact, we know exactly what the input and the output of the neural network 

should be, and the training process can be seen as the optimization problem to identify the set 

of values of the biases  𝑏𝑏𝑏 and weights  𝑊𝑊𝑖𝑖𝑖𝑖(𝑙𝑙) that makes the predicted outputs the closest to the 

expected ones. Therefore, like in any optimization problem, when training a neural network, we 

define a loss function that we would like to minimize:𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿 𝐿𝐿 𝐿𝐿𝐿𝑖𝑖, 𝑦𝑦𝑖̂𝑖 | 𝑏𝑏,𝑊𝑊) + 𝑔𝑔 𝑔𝑔𝑔,𝑊𝑊)

Here, 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑖̂𝑖 represent the predicted and expected output, 𝑓𝑓 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓,  𝑊𝑊 ) is the loss function 

quantifying the dissimilarity between predicted and expected outputs, based on the value of 

  𝑊𝑊, and  and 𝑔𝑔 𝑔𝑔𝑔,  𝑊𝑊 ) is a regularization term. Note that the single bar on top of b and the double 

bar on top of W indicate that we are dealing with arrays and matrices, respectively. The activa-

tion functions of the neural network are not “trained” but rather encoded in the neural network  

architecture, although there have also been attempts to use families of activation functions and/

or a combination of activation functions of some sort to be identified during the learning process.

If all the functions used in the formulation above – namely, the activation function 𝑓𝑓𝑎𝑎, the  

dissimilarity function 𝑓𝑓, and the regularization function 𝑔𝑔 are continuous and differentiable, the 

loss to be minimized is also differentiable; therefore, minimization gradient-based techniques 

can generally be applied. The very famous backpropagation algorithm is one implementation 

of such methods where the gradients of the loss with respect to the weights are computed very  

efficiently by iterating backward from the last layers up to the first, making use of the chain rule and 

avoiding redundant calculation. There exist several variants of the general approach, depending 

on how the direction and the step updates are handled across the learning. Unfortunately, you 

must also note that the shape of the loss function can be extremely complex, with multiple local 

minima as well as saddle points. Finding the absolute minima is often very hard, but finding local 

minima can be good enough for most cases. For more information, please refer to Deep Learning, 

a book by Goodfellow et al.
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Computational frameworks for ANNs
Over the years, many frameworks and libraries have been developed to deal with the  

implementation, training, and computation of ANNs, also following the different trends in the 

programming languages traditionally used by researchers, like C, C++, Lua, Python, and Java. 

Generally, all these libraries provide a framework to define:

•	 The representation of the network, which specifies the relationship between inputs,  

outputs, and the parameter that this representation depends on

•	 The loss function relating input, outputs, and parameters, which we want to minimize

•	 The optimizer algorithm to be used to minimize the loss function

Besides this basic information needed to train ANNs, the different libraries also commonly  

offer (and this is where the key differences between libraries often emerge from a developer’s  

standpoint) some predefined types of neurons, kernels, and layers. These predefined components 

make it easier to define new neural network architectures – even very complex ones – resulting 

in an extremely easy and lean coding process.

Of course, besides the high-level functionalities, the different frameworks and libraries may very 

well achieve significantly different performances, in terms of CPU/GPU usage, memory usage, and 

training time, as well as support (or lack thereof) for distributed training.

These capabilities can determine the choice of one framework over another, and these key  

performance indicators (KPIs) are tightly connected to the backbone and low-level  

implementation of the underlying computational engine.

All the neural network frameworks depend – in one way or another – on a symbolic  

representation of the graph, allowing you to build a structure that describes how inputs are 

combined to produce intermediate results and the final outputs. This is often referred to as 

a computational graph or a stateful dataflow graph, where nodes are the variables (scalar,  

arrays, and tensors) – eventually transformed using activation functions – and edges  

represent the combinations of variables (edge source) to produce the output (edge target) of a single  

neuron. Each edge is also described by a weight that is multiplied to the input. You can  

therefore understand how such a graph can generically represent a composition of equations of 

the form shown in the Training neural networks section above.

The loss function can equally be represented symbolically, and the computational graph  

representation is extremely useful for computing the differentiation of the loss function (needed 

by the backpropagation algorithm) with respect to the various parameters (i.e., the weights and 

biases) in a modular way. 
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However, two classes of neural networks emerged based on how the differentiation is done: 

symbol-to-number and symbol-to-symbol differentiation.

Some neural network frameworks implement differentiation by taking the computational graph 

and a set of inputs and then returning a set of numerical values representing the gradients of 

the loss function with respect to their parameters. This approach is commonly referred to as 

symbol-to-number differentiation, and it is used by PyTorch and Caffe. On the other hand, 

other frameworks take the input computation graph and the loss function, and they generate  

additional nodes and edges that provide a symbolic description of the derivatives, therefore  

effectively creating a computational graph for the differentiation computations. This is referred 

to as symbol-to-symbol differentiation, and – compared to the symbol-to-number approach – 

it provides the advantage of easily extending to higher derivatives very naturally since the same 

logic can be recursively applied to the resulting graph of the differentiation. This is the approach 

that is taken by Theano and TensorFlow.

But this advantage comes with a cost. In fact, symbol-to-symbol frameworks are characterized 

by a static graph, where the computational graph (and its derivatives) is usually defined upfront, 

and – in this immutable structure – the data is then fed into it, flowing through the operations, 

providing either predictions or derivatives. The idea of the data flowing through the graph is also 

the reason behind the Flow suffix in TensorFlow. On the other hand, frameworks like Torch build 

the computational graph at execution time (when data is fed to it), therefore easily allowing you 

to change its topology and deal with dynamic graphs.

In the next subsections, we provide a more detailed description of two popular neural network 

frameworks that will be used in this book – TensorFlow and PyTorch – giving you tools that will 

hopefully allow you to tackle different use cases. As we will see in the Frameworks for deep learning 

on graphs section, this is also true when dealing with GNNs: some algorithms and frameworks 

will be better suited for your tasks, depending on their requirements.

TensorFlow
Released as open source by Google in 2017, TensorFlow is now the standard, de facto  

framework that allows symbolic computations and differential programming, especially in  

production and industrial use cases. By abstracting its computation, TensorFlow is a tool that can run 

on multiple backends: on machines powered by CPUs, GPUs, or even ad hoc, specifically-designed  

processing units such as the tensor processing units (TPUs) designed by Google. TensorFlow-powered  

applications can also be deployed on different devices, ranging from single and distributed servers 

to mobile devices.
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As previously mentioned, TensorFlow provides a framework to perform symbol-to-symbol  

differentiation, which allows you to symbolically define a computational graph to be  

differentiated with respect to any of its variables, resulting in a new computational graph that can 

also be differentiated to produce higher-order derivatives. Historically, TensorFlow only supported 

static graphs. However, with the release of version 2, TensorFlow now also provides support for 

dynamic graphs, with the so-called eager execution in which the graph is built at execution time.

TensorFlow is organized around the concept of tensors. These abstractions represent any kind 

of data, be it inputs, outputs, intermediate results, and/or variables to be optimized during 

training. Although one could implement the different operations between tensors (e.g., matrix  

multiplication between inputs and weights as well as the application of activation functions), 

since its last major release, 2.x, the standard way of building a model with TensorFlow is by using 

the Keras API.

Keras was natively a side external project with respect to TensorFlow, aimed at providing a  

common and simple API to use several differential programming frameworks, such as  

TensorFlow, Theano, and CNTK, for implementing a neural network model. It abstracts the 

low-level implementation of the computation graph and provides you with the most com-

mon layers used when building neural networks (although custom layers can also be easily  

implemented), such as the following:

•	 Convolutional layers

•	 Recurrent layers

•	 Regularization layers

•	 Loss functions

Keras also exposes APIs that are very similar to scikit-learn, the most popular library for machine 

learning in the Python ecosystem, making it very easy for data scientists to build, train, and  

integrate neural network-based models in their applications.

Moreover, TensorFlow comes with a set of modules and tools that makes it a very mature  

technology, oriented for industrial and production use cases. One such tool worth mentioning 

is TensorBoard, which is a graphical user interface (GUI) that allows you to monitor model 

training and debug/understand models. It is extremely helpful to data scientists and seamlessly 

integrated into the framework.
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A simple classification example
To showcase how easy it is to train a neural network in TensorFlow and Keras, we will  

apply this framework to a simple case of image classification using the Fashion-MNIST dataset. 

This example, based on a well-known task, will serve as preparation for later understanding  

graph-based applications.

The Fashion-MNIST dataset is similar to the famous MNIST dataset, a collection of hand-written 

numbers on a black-and-white image. In fact, Fashion-MNIST has 10 categories and consists of 

60k and 10k (training dataset and test dataset) 28x28 pixel grayscale images that represent a 

piece of clothing (T-shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle boot). 

However, the Fashion-MNIST dataset image classification is a harder task than the original MNIST 

dataset and it has historically been used for benchmarking algorithms, with recent algorithms 

achieving top performances on this dataset.

The dataset is already integrated into the Keras library and can be easily imported using the 

following code:

from tensorflow.keras.datasets import fashion_mnist

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

It is usually good practice to rescale the inputs with an order of magnitude of around 1 (for 

which activation functions are most efficient) and make sure that the numerical data is in single  

precision (32 bits) instead of double precision (64 bits). This is because it is often desirable to 

promote speed rather than precision when training a neural network, which is a computationally 

expensive process. In certain cases, the precision could even be lowered to half-precision (16 bits).

We transform the input with the following:

x_train = x_train.astype('float32') / 255.

x_test = x_test.astype('float32') / 255.

We can grasp the type of inputs we are dealing with by plotting some of the samples from the 

training set using the following code:

n = 6

plt.figure(figsize=(20, 4))

for i in range(n):

    ax = plt.subplot(1, n, i + 1)

    plt.imshow(x_train[i])

    plt.title(classes[y_train[i]])
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    plt.gray()

    ax.get_xaxis().set_visible(False)

    ax.get_yaxis().set_visible(False)

plt.show()

In the preceding code, classes represents the mapping between integers and class names, for 

example, T-shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle boot:

Figure 3.2 – Some samples taken from the training set of the Fashion-MNIST dataset

Let’s now build the first model. Using the Keras API, we create a simple model that unrolls the 

images into a flat structure (1D vector of 784 elements) and adds one hidden layer, fully connected, 

of 128 units:

 model = tf.keras.models.Sequential([

  tf.keras.layers.Flatten(input_shape=(28, 28)),

  tf.keras.layers.Dense(128, activation='relu'),

  tf.keras.layers.Dropout(0.2),

  tf.keras.layers.Dense(10)

])

Note that the last layer represents a fully connected layer that maps out the number of classes of 

our task (e.g., 10), representing the probabilities for each of the 10 classes. To prevent overfitting, 

before the output layer, we use a Dropout layer, which randomly removes (with a probability of 0.2 

– i.e., 20%) the activation of a neuron during training. The idea is that the neural network should 

be resilient and able to make good predictions, even when some of its single units are removed.

Note that images in this dataset have 28x28 pixels, which is why they appear low-res-

olution and blurry in the preceding figure to accurately reflect the original raw data.
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Once the model is defined, it can be helpful to inspect it with the following:

model.summary()

This should provide the following output:

Model: "sequential"

_________________________________________________________________

Layer (type)                Output Shape              Param #  

=================================================================

flatten (Flatten)           (None, 784)               0        

                                                                

dense (Dense)               (None, 128)               100480   

                                                                

dropout (Dropout)           (None, 128)               0        

                                                                

dense_1 (Dense)             (None, 10)                1290     

                                                                

=================================================================

Total params: 101,770

Trainable params: 101,770

Non-trainable params: 0

Even this very simple model has more than 100k parameters.

Once the topology/architecture of our neural network is defined, we need to “compile” the 

model, which effectively means building the computational graph associated with its training. 

However, to fully specify the computational plan of the training, we also need to define the loss 

function (with respect to which we need to compute the gradients of the weights) as well as the  

optimization algorithm (that defines how the gradients are to be used):

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

optimizer = tf.keras.optimizers.Adam()

We can now compile the model with the following code:

model.compile(optimizer=optimizer,

              loss=loss_fn,

              metrics=['accuracy'])
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As you can see, when compiling the model, we can also provide extra metrics that will be monitored 

during training and evaluation. In fact, the loss function we would like to minimize may be – in 

some cases, such as this one – somewhat obscure, based on the difference between probability 

distributions. This allows efficient training, but it is not readily meaningful to us. It is indeed a lot 

more natural to refer to the “accuracy,” which represents how many correct predictions (taking 

the class with the highest probability) the model is able to make.

We are now fully ready to train the neural network, which can be easily done with:

model.fit(

    x_train,

    y_train,

    validation_data=(x_test, y_test),

    epochs=20,

    batch_size=128,

    shuffle=True

)

Although a very simple example, the model achieves interesting performance, with accuracy on 

the validation set of around 90%.

In the notebook, we also provide a more complex network, using convolutional and max-pooling 

layers, which will be explained more in the following section. Feel free to try using and training 

more complex networks.

PyTorch
PyTorch is a library that is based on the Torch framework. Historically, Torch was initially  

developed at EPFL and it included a core implemented in C, wrapped by a framework in Lua. 

However, in 2016, Meta AI started to develop PyTorch, written in Python and offering an API more 

accessible to data scientists to train neural networks, still leveraging the same low-level core 

computational engine written in C. Since then, the framework has gained a lot of momentum. It 

is now part of the Linux Foundation and also implements APIs in other languages, such as C++.

Similar to TensorFlow, PyTorch revolves around the use and transformation of tensors.  

However, in PyTorch, tensors not only represent the inputs but also store the computational graph 

that is required to compute them. Notably, one of the key differences of PyTorch with respect to  

TensorFlow is that there is no static graph. In fact, in PyTorch, the computational graph is  

recreated from scratch at every iteration. 
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During the forward pass, PyTorch both performs the required computations and builds up the 

graph representing the operations that allow the gradient computation for any intermediate result/

parameter. Every tensor has an attribute (called grad_fn) that represents the entry point to this 

computational graph, and that is evaluated in the backward pass to compute the actual gradients.

Because of such a flexible design, PyTorch is naturally designed to deal with dynamic neural 

networks whose topology may change from one iteration to another. Moreover, such a design 

also generally feels more natural for beginners and new users since there is no strict separation 

between building the computational graph and executing/feeding data to it, as in TensorFlow v1. 

Because of its flexible design and ease of use, PyTorch has historically been very popular among 

researchers and people building prototypes.

Also, PyTorch is fairly lightweight, with several independent modules bundling datasets,  

transformations, and specific models for a given high-level topic, e.g., torchvision for image- 

processing tasks, torchtext for NLP tasks, torchaudio for audio and signal processing, torchrec 

for recommendation system use cases, and torchmetrics for metrics computation.

A simple classification example
We will now translate the previous example of classification with the Fashion-MNIST dataset to 

highlight the similarities and the key differences between the PyTorch API and syntax (owing to 

the different designs discussed above). As you will see shortly, since this is an image classification 

task, we will heavily rely on features of the torchvision library.

Similar to TensorFlow and Keras, PyTorch provides a simple API to load benchmark datasets. 

However, with PyTorch, we can also set a simple transformation (e.g., rescaling) during the input 

reading phase. To do so, we need to first define the transformation:

from torchvision import transforms

transformer=transforms.Compose([transforms.ToTensor()])

This allows us to convert the input images into a tensor with rescaled values. We can then use 

this transformation when reading the data (note that PyTorch is looking for the dataset in the ./

data folder and it will download the dataset if this folder does not exist):

train_dataset = datasets.FashionMNIST(

    './data', train=True, download=True, transform=transformer

)

test_dataset = datasets.FashionMNIST('./data', train=False, 
transform=transformer)
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Here, the dataset already comes with meta-information about the classes of the samples, which 

can be accessed through the train_dataset.classes and train_dataset.class_to_idx  

attributes.

Now that we have loaded the data, we can build the neural network architecture. In PyTorch, this 

is achieved by extending the torch.nn.Module class and implementing the forward method, with 

similar layers to the ones used previously in the TensorFlow example:

import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(28*28, 128)
        self.dropout = nn.Dropout(0.2)
        self.fc2 = nn.Linear(128,10)
    def forward(self, x):
        x = self.flatten(x)
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

# Instantiate the model
model=Model()

Once the model is defined, we need to specify the loss function as well as the optimization  

algorithm to fully specify our training process. Similar to TensorFlow, PyTorch provides some 

natively implemented functionalities for specifying these settings:

import torch.optim as optim

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters())

In addition to using the cross-entropy loss, we will also gather some more insightful performance 

indicators during training and evaluation using the torchmetrics module:

from torchmetrics.classification import MulticlassAccuracy

n_classes = len(train_dataset.classes)

accuracy = MulticlassAccuracy(num_classes = n_classes)
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We now need to implement the training process. As pointed out earlier, PyTorch builds the  

computational graph at each iteration, and consequently, we will need to implement the gradient 

updates for each batch separately. PyTorch provides convenient utilities to split the dataset into 

batches, returning an iterable class:

trainloader = torch.utils.data.DataLoader(

    train_dataset, batch_size=128, shuffle=True

)

testloader = torch.utils.data.DataLoader(

    test_dataset, batch_size=test_dataset.data.shape[0]

)

Note that for tests, we have just created a single batch that includes the full test dataset. With 

this, we can decompose the training into its batch steps:

for epoch in range(n_epochs):  # loop over the dataset multiple times

    for i, data in enumerate(trainloader, 0):

        # implement a backpropagation step

        ...

    # Evaluate accuracy at the end of epoch

    for inputs, labels in testloader:

        preds = model(inputs)

        print(f"Accuracy on validation set: {float(accuracy(preds, 
labels))}")

PyTorch provides primitives that make it very easy and natural to implement the backpropagation 

step, explicitly defining the forward pass and the backward one:

inputs, labels = data

# Initialize parameters gradients

optimizer.zero_grad()

# Forward pass

outputs = model(inputs)

loss = criterion(outputs, labels)

# Backward pass

loss.backward() # Computes the gradient

optimizer.step() # Updates the parameters
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That’s it! The training of your first neural network in PyTorch is complete. You can find the full 

example in the notebook attached to this book. Feel free to run it and play around with some of 

the parameters (model architecture, optimizer specs, etc.).

Classification beyond fully connected layers
In addition to using fully connected layers, we can easily extend our model to incorporate  

convolutional layers, which are more effective for image data as they utilize the 2D structure of 

the input. CNNs apply filters across the input image to detect patterns such as edges, textures, or 

objects. Here’s an example of how to build a simple CNN using Keras:

model = tf.keras.models.Sequential([

    tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 
28, 1)),

    tf.keras.layers.MaxPooling2D((2, 2)),

    tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),

    tf.keras.layers.MaxPooling2D((2, 2)),

    tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),

    tf.keras.layers.Flatten(),

    tf.keras.layers.Dense(64, activation='relu'),

    tf.keras.layers.Dense(10)

])

In this model, we first apply several convolutional layers followed by max pooling to reduce spatial 

dimensions, extract features, and pass them to a Dense layer for classification. You can compile 

and train this model in the same way as before, and it should yield improved performance due 

to the hierarchical feature extraction from the image.

In PyTorch, building a CNN is just as straightforward as using fully connected layers. CNNs are 

ideal for image classification tasks because they apply filters to detect patterns in the input images, 

such as edges or textures, hierarchically. Below is an example of a simple CNN architecture using 

torch.nn.Conv2d and torch.nn.MaxPool2d layers:

import torch.nn as nn
import torch.nn.functional as F
class CNNModel(nn.Module):
    def __init__(self):
        super(CNNModel, self).__init__()
        # 1 input channel (grayscale), 32 output filters
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
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        self.pool = nn.MaxPool2d(2, 2)  # Pooling with a 2x2 window
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
        self.fc1 = nn.Linear(64 * 5 * 5, 64)
        # 64 filters output, 5x5 feature map

        self.fc2 = nn.Linear(64, 10)  # 10 output classes
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x))) 
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 64 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

In this CNN model, we use two convolutional layers (Conv2d) to extract features from the images, 

followed by max-pooling layers to downsample the feature maps. The output is then flattened 

and passed through fully connected layers for classification. As before, you can define the loss 

function, optimizer, and training loop, but now you’re using a more advanced architecture suited 

for image data.

You may be wondering why we are using images in a graph machine learning book. Just bear 

with us for now, and hopefully, by the end of this chapter, you’ll realize that this example was 

not that off-path after all.

Introduction to GNNs
As you will see shortly, the concepts introduced in the previous section can be quite naturally 

extended to deal with graphs.

GNNs are deep learning methods that work on graph-structured data. This family of  

methods is sometimes also referred to as geometric deep learning and is gaining increasing  

popularity in a variety of applications, including social network analysis and computer graphics. The  

underlying idea of GNNs is a natural extension of CNNs, which we just used in the previous  

example to process images and have achieved impressive results when dealing with regular  

Euclidean spaces, such as text (one-dimensional), images (two-dimensional), and videos 

(three-dimensional). As shown in the previous example, CNN layers combine inputs from their 

neighborhood, applying a static kernel that is swept throughout the entire space – that is, every 

single pixel making up the image. Moreover, a classic CNN consists of a sequence of layers and 

each layer extracts multi-scale localized spatial features. Those features are exploited by deeper 

layers to construct more complex and highly expressive representations.
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We can extend the same concept for graphs that are defined over a non-Euclidean space, for 

which neighboring information is not provided by the Euclidean distance between the points but  

provided by the connection information embedded in the graph, as shown in Figure 3.3. Indeed, the 

original formulation of GNNs (proposed by Scarselli et al. back in 2009) relies, similarly to CNNs, 

on the fact that each node can be described by its features and its neighborhood. Information 

coming from the neighborhood (which represents the concept of locality in the graph domain) 

can be aggregated and used to compute more complex and high-level features.

Figure 3.3 – Visual difference between Euclidean and non-Euclidean neighborhoods

Each node 𝑣𝑣𝑖𝑖 is therefore associated with a set of features or hidden state ℎ𝑖𝑖𝑡𝑡, where t represents 

the 𝑡𝑡𝑡-th layer and i is the node’s index. We will be ignoring node attributes for simplicity. At each 

layer, nodes accumulate input from their neighbors using a simple neural network layer:ℎ𝑖𝑖𝑡𝑡  =   ∑ 𝜎𝜎𝜎𝜎𝜎𝑗𝑗ℎ𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏 
𝑣𝑣𝑗𝑗 ∈𝑁𝑁(𝑣𝑣𝑖𝑖) 

Here, 𝑊𝑊𝑊 𝑊 𝑊𝑊𝑑𝑑𝑑𝑑𝑑  and 𝑏𝑏𝑏 𝑏 𝑏𝑏𝑑𝑑  are trainable parameters (where  𝑛𝑛 is the number of nodes and  𝑑𝑑𝑑 
the dimension of the features/hidden state). 𝜎𝜎 is a non-linear function. It’s important to note that 

the summation only extends to the neighboring nodes. These equations can be applied recursively, 

where the previous state, computed at the previous layer, is used to calculate the hidden state of 

the next layer (similarly to what is generally done in recurrent neural networks).

As a result of this process, we can therefore imagine that we obtain a final hidden state or  

embedded representation,  𝑍𝑍, which is a function of the input set of features  𝑋𝑋𝑋 and the topology 

of the network, represented by the adjacency matrix  𝐴𝐴:𝑍𝑍𝑍 𝑍 𝑍GNN (𝑋𝑋𝑋 𝑋𝑋𝑋)
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Here,  𝑍𝑍𝑍 can be seen as a compressed latent representation of the nodes. Note that  𝑍𝑍𝑍 is actually 

a new set of features for each node, which can be downstream to other (GNN) layers to create 

deeper representations. These features can be used to achieve a number of tasks, as we will see 

in the rest of the book, including classification and forecasting, among others.

Variants of GNNs
Several attempts have been made in recent years to address the problem of learning from graph 

data. Variants of the previously described GNN have been proposed, with the aim of improving 

its representation learning capability. Some of them are specifically designed to process specific 

types of graphs (direct, indirect, weighted, unweighted, static, dynamic, and so on).

Graph convolutional network (GCN)-based encoders are one of the most diffused variants of 

GNN for unsupervised learning. GCNs are GNN models inspired by many of the basic ideas behind 

CNNs. Filter parameters are typically shared over all locations in the graph and several layers are 

concatenated to form a deep network.

There are essentially two types of convolutional operations for graph data – namely, spectral 

approaches and non-spectral (spatial) approaches. The first, as the name suggests, defines  

convolution in the spectral domain (that is, decomposing graphs in a combination of simpler 

elements). Spatial convolution formulates the convolution as aggregating feature information 

from neighbors, as we previously described.

Also, several modifications have been proposed for the propagation step (convolution, gate  

mechanisms, attention mechanisms, and skip connections, among others), with the aim of  

improving representation at different levels. Also, different training methods have been proposed 

to improve learning.

Although these concepts could be implemented using the framework we presented earlier in the 

chapter (namely, TensorFlow and PyTorch) there also exist libraries built on top of them that make 

integrating GNNs (in all their flavors) extremely easy, seamless, and fast. In the next section, we 

will present the most relevant ones.

Frameworks for deep learning on graphs
Over the years, a few libraries have been developed to help data scientists integrate graph  

machine learning, and more specifically, GNNs, into their analytical pipelines. The existence of 

different libraries is due to different choices of the framework used in the backend (e.g., TensorFlow,  

PyTorch, etc.), the research group authoring the library (sometimes being an industrial group 

and sometimes an academic department), as well as some specific needs addressed by the library 

(e.g., large graphs, dynamic graphs, etc.).
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In the following, we will consider three frameworks:

•	 PyTorch Geometric (PyG):

As the name suggests, PyG (https://pytorch-geometric.readthedocs.io/en/latest/) 

is a library that is built upon PyTorch, and it provides abstractions and functionalities for 

defining, training, and evaluating GNNs. More generally, it provides various methods for 

performing deep learning on graphs and irregular structures. It also constitutes a central 

repository for existing implementations of published papers and academic research.

•	 StellarGraph:

StellarGraph was possibly one of the first libraries to appear in the landscape of graph 

machine learning and GNNs and was designed, developed, and supported by the Data61 

team at CSIRO (https://data61.csiro.au/). StellarGraph was built upon TensorFlow 

2.x and therefore uses Keras and scikit-learn APIs to provide a modular, extensible, and 

user-friendly user experience that can be easily integrated with common data analytics 

pipelines. Besides its analytical capabilities, StellarGraph also features a set of classes 

and utilities to represent and work with graph data, seamlessly parsing and importing 

NetworkX objects.

•	 Deep Graph Library (DGL):

DGL can work on top of multiple existing frameworks, currently supporting  

PyTorch, MXNet, and TensorFlow (although at the time of writing, the community is  

progressing more and more toward PyTorch). Moreover, it is powered by a group of  

committers spanning multiple organizations and universities, including AWS, NVIDIA, 

New York University, and Georgia Institute of Technology. More importantly, DGL also 

provides very structured and extensible functionalities to implement message passing 

and reduction steps, which, as you will see in the next chapters, are some fundamental 

building blocks for implementing more complex and scalable GNN layers and models.

Despite their unique features and design philosophies, these frameworks share a similar  

structure that facilitates a comparative analysis. In fact, all the frameworks provide primitives 

for the following:

•	 Graph representation

•	 Data loading

•	 Model definition

•	 Training loop

https://pytorch-geometric.readthedocs.io/en/latest/
https://data61.csiro.au/
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In the following subsections, we will provide an overview of the main similarities and differences 

that the various framework provides for implementing the operations above.

Graph representation
PyG, StellarGraph, and DGL have specific classes to model pairwise relations (edges) between 

objects (nodes). PyG represents graphs using PyTorch tensors and provides a versatile data  

structure for storing various types of graph-related information such as adjacency matrices, edge 

lists, and node features. StellarGraph uses optimized data structures to offer support for different 

graph formats including NetworkX graphs and pandas DataFrames. Moreover, it uses specialized 

structures such as the StellarGraph class and StellarDiGraph class for handling different types 

of graphs efficiently. DGL has its own graph object that can be created from diverse input formats 

such as adjacency matrices and edge lists. Its unified interface handles both static and dynamic 

graphs, and this helps ensure compatibility with deep learning models across different scenarios.

Nevertheless, despite the specific implementations of the classes, all three libraries offer  

methods and attributes to explore and access the graph structure (number of nodes, number of 

edges, node features, edge features, etc.).

Data loading
The way the graph structure is loaded into memory depends on several factors, including 

the specific training algorithm. For example, some models should be trained using samples 

of nodes, others need subgraphs as input or even the full graph. Moreover, especially when  

dealing with large-scale graphs that may not fit entirely into memory, designing proper data-loading  

strategies is crucial. Graph deep learning frameworks offer various strategies to tackle this  

challenge, enabling the processing of graphs of varying sizes while optimizing resource utilization.

For well-known graph models, the specific graph-splitting implementation (to properly  

generate training, validation, and test sets) may be already implemented for you. For example, for the  

well-known GraphSAGE, PyG implements the NeighborLoader and LinkNeighborLoader to choose 

from, thus making sure the input feeding the models is constructed correctly.

To summarize, the main data loading methods are:

•	 Loading whole graphs: The simplest approach is to load the entire graph into memory. 

This method is suitable for smaller graphs that can be accommodated within available 

memory constraints. All three frameworks support this method, providing utilities to 

load graph data directly into memory for processing.
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•	 Edge loading: To handle larger graphs, batching the edges is a common strategy  

employed by these frameworks. In this approach, the graph is partitioned into smaller  

subgraphs based on edges. Each subgraph is then loaded into memory separately, allowing for  

efficient processing of large graphs by working on smaller chunks at a time.

•	 Node loading: Similar to edges, batching of nodes involves partitioning the graph based 

on nodes instead of edges. This method divides the graph into smaller subgraphs, each 

containing a subset of nodes and their associated edges. By loading these subgraphs 

individually, node splitting enables the processing of large graphs in a memory-efficient 

manner.

Moreover, in addition to traditional data-loading methods, these frameworks also support data 

augmentation techniques for generating synthetic graphs or augmenting existing graph data.

Note that the implementation of the data-loading process for each framework reflects the style 

of the framework itself (Keras for StellarGraph, PyTorch for PyG, and DGL). Therefore, you will 

find “generators” for Keras-inspired frameworks and “data loaders” for PyTorch-inspired ones. 

It is worth mentioning that, unlike traditional deep learning settings where splitting data into 

training and validation sets is straightforward, doing the same for graph data is not easy. When 

dealing with a graph-level task (your dataset consists of a set of graphs), splitting a single graph 

into training and validation sets involves sampling a set of edges or nodes in a proper way;  

otherwise, improper splitting can lead to data leakage. Some of these “splitting” (or sampling) 

strategies are already implemented in the various frameworks and are often embedded in the data- 

loading process. We will discuss this topic further and how to avoid data leakage in graph settings 

in Chapter 6, Solving Common Graph-Based Machine Learning Problems, when discussing the link 

prediction problem.

Model definition
Once you understand how to represent a graph in the specific framework and how to load it (or 

part of it), it is time to define the actual deep learning model. In the next chapters, you will learn 

about several variants of GNNs. For now, it is sufficient to know that each of these frameworks 

implements most of these variants and you can simply use them to solve your problem without 

dealing with their internal implementation (similarly to what you do when using standard CNN 

models and layers in Tensorflow and PyTorch). Some of these classes include graph convolutional 

layers, GraphSAGE, and graph attention layers, among others.
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Training loop
Optimizing the model involves iterative batch processing, loss calculation, and parameter  

updates. These operations are supported by all three frameworks and are strictly related to the 

deep learning framework used as the backend (PyG and DGL use a PyTorch-like training approach, 

while StellarGraph exposes the “fit” method typical of Keras).

In the rest of the chapter, we will show you how easy it is to use each of these frameworks by  

implementing a simple “link prediction” task on top of the Cora dataset. Without going into much 

detail (you will be learning about several problems that can be solved with machine learning 

on graphs in the next chapters), the task of link prediction consists of predicting whether a link 

exists between two given nodes. The Cora dataset is a perfect example for this task, featuring a 

collaboration network of 2,700+ scientific publications, classified into 7 classes. The citation links 

consist of 5,400+ links and each node (representing a publication) is described by a 1,433-size 

vector indicating the presence/absence of a particular word from a restricted vocabulary of 1,433 

words. This representation is a simplified version of the so-called bag-of-words representation. 

Therefore, the Cora dataset, thanks to the node features, represents a very suitable dataset on 

which a GNN and GCN can be implemented.

Interestingly, the link prediction task may also correspond to reconstructing the original 

graph from the compact representation of the nodes, Z. Indeed, we would be successful at our 

prediction task when the “predicted” edges correspond to the ones actually existing in the  

“target” graph. In view of this, the link prediction task is therefore closely connected to graph auto- 

encoders (GAEs), which encode the nodes into a compact representation and then decode such  

information to reconstruct the original topology, minimizing the difference between the original 

and the reconstructed graph. We will digress more on auto-encoders in the next chapter, but to 

start, a simple way to reconstruct the adjacency matrix using the compressed representation Z 

is by means of the inner product: 𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖  ∙  𝑧𝑧𝑗𝑗
Here, 𝑠𝑠𝑖𝑖𝑖𝑖 can be viewed as the probability that a link exists between node i and node j. The  

reconstructed matrix can be expressed as:𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝑇𝑇

In the next examples, you will see how this can easily be done with the frameworks.
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PyG
PyG provides a simple API to load the Cora dataset. Similar to what we have done previously, we 

add some transformation in the data-loading phase to normalize the data and to split it (note 

that, this time, the function comes from PyG as it is specifically designed to work with graph 

datasets). Moreover, besides normalization, we generate a positive (existing) and negative (non- 

existing) list of edges, which we will use to make sure that the reconstructed graph correctly  

provides edges only where they exist. Because of the specific auto-encoder implementation in PyG,  

negative edges are not required for the training; therefore, we will only generate them for the 

test set:

import torch_geometric.transforms as T

from torch_geometric.datasets import Planetoid

transform = T.Compose([

    T.NormalizeFeatures(),

    T.RandomLinkSplit(

        num_val=0., num_test=0.1, is_undirected=True,

        split_labels=True, add_negative_train_samples=False

    ),

])

path = os.path.join(DATA_PATH, 'data')

dataset = Planetoid(path, "Cora", transform=transform)

train_data, val_data, test_data = dataset[0]

The datasets that have been generated (train_data, val_data, and test_data) bundle  

topology information, node features, and labels. For instance, the matrix with node features can 

be accessed via the following:

train_data.x # of shape (N_nodes, 1433)

The vector with label information can be accessed via:

train_data.y # of shape (N_nodes) with numerical values representing 

             # the labels

The edges (topology) of the graph can be found with:

train_data.edge_index # of shape (2, N_edges)
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Moreover, the RandomLinkSplit class also generates a list of positive and negative labels:

test_data.pos_edge_label_index # of shape (2, N_positive_edges)

test_data.neg_edge_label_index # of shape (2, N_negative_edges)

Note that since we specified add_negative_train_samples=False, negative edges are not  

generated for the training set.

To build the model, we will implement a GAE in PyG that will allow us to reconstruct the original 

graph. We first start by defining the structure for the encoder using a GNN based on two GCN 

layers. PyG makes this extremely easy. We first create the encoder layer:

from torch_geometric.nn import GCNConv
class GCNEncoder(torch.nn.Module):
    def __init__(self, num_node_features, num_embedding):
        super().__init__()
        self.conv1 = GCNConv(num_node_features, 2 * num_embedding)
        self.conv2 = GCNConv(2 * num_embedding, num_embedding)
    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index).relu()
        return self.conv2(x, edge_index)

Note that the forward function of GCNs in PyG always takes two required arguments and one 

optional argument: the first required argument is the tensor of the node features, the second  

required argument is edge_indices (or the adjacency matrix), and the third, optional argument is 

the edge weights. Once the encoder is defined, the GAE can be created with one single command:

from torch_geometric.nn import GAE

model = GAE(GCNEncoder(1433, n_embeddings))

The GAE class already implements the decoder layer for us (using the inner product between 

the Z vector of embedding). It also provides some useful functions to compute the loss as well as 

evaluate the model during training, as we will see shortly.

As usual, to fully specify the training, we need to define the optimizer to be used (since we will 

be using the loss implemented in the GAE class):

optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
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Using this, we can implement the training procedure using the usual PyTorch functionalities:

for epoch in range(num_epochs):

    # zero the parameter gradients

    model.train()

    optimizer.zero_grad()

    z = model.encode(train_data.x, train_data.edge_index)

    loss = model.recon_loss(z, train_data.pos_edge_label_index)

    loss.backward()
    optimizer.step()   
    # Test/Evaluate
    model.eval()
    z = model.encode(test_data.x, test_data.edge_index)
    auc, ap = model.test(
        z, test_data.pos_edge_label_index, test_data.neg_edge_label_index
    )
print(f"Performance on validation set => Area Under the ROC Curve: {auc} 
Average Precision: {ap}")

During training, we can monitor prediction performances by using common metrics such as 

area under the ROC curve (AUC) or average precision. By maximizing one of these, we can build 

a robust model that may either prioritize precision or recall, or a combination of them, and that 

is able to best generalize on future cases.

The GAE is now implemented and trained, and its output can be used to generate some node 

embeddings, similar to what was previously done for images.

StellarGraph
To load the Cora dataset into a StellarGraph Graph object, you can simply run the following code:

from stellargraph import datasets

dataset = datasets.Cora()

G, _ = dataset.load()
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G represents the graph structure with several useful methods readily available to the user, such 

as G.info() to display the main information of the dataset:

StellarGraph: Undirected multigraph
 Nodes: 2708, Edges: 5429

 Node types:
  paper: [2708]
    Features: float32 vector, length 1433
    Edge types: paper-cites->paper

 Edge types:
    paper-cites->paper: [5429]
        Weights: all 1 (default)
        Features: none

As you can see, StellarGraph supports both node and edge features (although, in this case, edges do 

not have any features) as well as the possibility of defining a taxonomy for the node and edge types.

Similar to what is provided in PyG, StellarGraph also provides functionality to split edges into 

positive and negative samples:

edge_splitter_test = EdgeSplitter(G)

G_test, edge_ids_test, edge_labels_test = edge_splitter_test.train_test_
split(

    p=0.1, method="global", keep_connected=True

)

edge_splitter_train = EdgeSplitter(G_test)

G_train, edge_ids_train, edge_labels_train = edge_splitter_train.train_
test_split(

    p=0.1, method="global", keep_connected=True

)

Note that, in this case, we also create the reduced graph where we remove the test edges (G_test) 

and the test and train edges (G_train). Since this is an auto-encoder, we will not use these graphs, 

but as you will see in the following code, in predictive tasks (e.g., node/edge classification), this 

will be very important to prevent data leakage from training to test sets.
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StellarGraph also provides a simple API to create both the input tensors and the computational 

graph that will be fed into TensorFlow. In particular, FullBatchLinkGenerator allows us to 

supply both the node features as well as the graph data (i.e., adjacency matrix) to be used on 

different kinds of models. In the following code, since we will be using a GCN, we create the 

inputs as follows:

train_gen = FullBatchLinkGenerator(G, method="gcn")

train_flow = train_gen.flow(edge_ids_train, edge_labels_train)

FullBatchLinkGenerator specifically generates batches that include all the nodes in the graph 

in a single batch. This is in contrast to mini-batch training, where only a subset of the graph is 

used in each iteration. Full-batch training can be memory-intensive, but it’s useful when you 

want to train a model on the whole graph at once. The flow method of the generator creates a 

data generator (a flow) that will feed the graph data to the model during training. This method 

prepares the actual data that will be passed to the GNN model, including the edges and their 

corresponding labels.

Creating a GCN model is extremely easy using the built-in functionalities:

gcn = GCN(

    layer_sizes=[16, 16], activations=["relu", "relu"], generator=train_
gen, dropout=0.3

)

The GCN class also allows us to extract the input and output tensors:

x_input, z = gcn.in_out_tensors()

If you inspect the x_input result, you will note that x_input is formed by four sub-inputs,  

corresponding to:

•	 The matrix of node features

•	 The edges we want to evaluate (whether they exist or not)

•	 The edge list of the graph

•	 The corresponding labels of the graph edges
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These inputs also correspond to what is provided by the train_flow.inputs property, therefore 

making it seamless to create a full model of our auto-encoder. In fact, we only need to combine 

the embeddings using the inner product (as specified below by “ip”) and reshape it to match the 

expected dimension:

prediction = LinkEmbedding(activation="relu", method="ip")(z)

prediction = keras.layers.Reshape((-1,))(prediction)

As with a normal TensorFlow model, we now just need to compile the model:

model = keras.Model(inputs=x_input, outputs=prediction)

model.compile(

    optimizer=keras.optimizers.Adam(lr=0.01),

    loss=keras.losses.binary_crossentropy,

    metrics=["binary_accuracy"]

)

Finally, the GNN can be simply trained using the standard API:

history = model.fit(train_flow, epochs=50)

Disclaimer

Owing to such a clean API and structured integration with TensorFlow (which 

is perhaps the standard de facto for production-ready applications based on  

neural networks), StellarGraph was the library chosen in the first edition of this book.  

Unfortunately, shortly after the publication of the first edition, this library stopped 

being actively maintained. Therefore, although the functionalities provided by 

the library are still extremely useful (especially for dynamic and temporal graphs), 

we advise you to consider this choice carefully if you need to provide long-term 

support for applications powered by your graph machine models. In this scenario,  

currently maintained frameworks such as PyG or DGL would be more appropriate, and  

whenever possible, examples using these frameworks will be provided  

alongside their StellarGraph implementations in the GitHub repository. However, it is  

important to note that StellarGraph still retains significant pedagogical value: its 

Keras-based coding style allows for concise and clear demonstrations of key concepts, 

making it an excellent tool for learning and experimentation. Therefore, the core 

ideas presented using StellarGraph can be easily translated to other frameworks, 

ensuring that the knowledge gained remains broadly applicable.
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DGL
Similar to PyG and StellarGraph, DGL aims to provide a set of tools for an easy implementation 

of GNNs. To perform link prediction using DGL, first, you need to construct the graph object  

representing your dataset. DGL provides various methods to load and manipulate graph data 

efficiently. For example, to load a dataset like Cora into a DGL Graph object, you might use the 

following code:

import dgl

import dgl.data

dataset = dgl.data.CoraGraphDataset()

G = dataset[0]

Once you have your graph, let’s split it into positive and negative examples and divide them into 

training and test sets, similar to other libraries like PyG. DGL provides some utilities to iterate 

over edges for link prediction tasks. One such way is to use a “sampler” to sample edges from 

the graph. With the following code, you will be creating a data loader that samples five negative 

examples per positive example:

sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)

sampler = dgl.dataloading.as_edge_prediction_sampler(sampler, negative_
sampler=dgl.dataloading.negative_sampler.Uniform(5))

train_seeds = torch.arange(G.num_nodes())

batch_size = 48

num_workers = 4

dataloader = dgl.dataloading.DataLoader(

G,

train_seeds,

sampler,

batch_size=batch_size,

shuffle=True,

drop_last=False,

num_workers=num_workers)
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Next, you can define your model architecture. DGL supports various types of GNNs, including 

GCNs, graph attention networks (GATs), and more (we will take a look at these types of models 

next, in Chapter 4, Unsupervised Graph Learning). For example, to create a GCN for link prediction, 

you can use the following code:

import torch

import torch.nn as nn

import dgl.nn as dglnn

import torch.nn.functional as F

class StochasticTwoLayerGCN(nn.Module):

   def __init__(self, in_features, hidden_features, out_features):

      super().__init__()

      self.conv1 = dgl.nn.GraphConv(in_features, hidden_features)

      self.conv2 = dgl.nn.GraphConv(hidden_features, out_features)

def forward(self, blocks, x):

   x = F.relu(self.conv1(blocks[0], x))

   x = F.relu(self.conv2(blocks[1], x))

   return x

class ScorePredictor(nn.Module):

   def forward(self, edge_subgraph, x):

      with edge_subgraph.local_scope():

         edge_subgraph.ndata['x'] = x

         edge_subgraph.apply_edges(dgl.function.u_dot_v('x', 'x', 'score'))

         return edge_subgraph.edata['score']

class Model(nn.Module):

   def __init__(self, in_features, hidden_features, out_features):

      super().__init__()

      self.gcn = StochasticTwoLayerGCN(

         in_features, hidden_features, out_features)

      self.predictor = ScorePredictor()

   def forward(self, positive_graph, negative_graph, blocks, x):

      x = self.gcn(blocks, x)

      pos_score = self.predictor(positive_graph, x)
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      neg_score = self.predictor(negative_graph, x)

      return pos_score, neg_score

After defining the model, you can train it using the standard PyTorch training loop, similar to 

other deep learning tasks:

def compute_loss(pos_score, neg_score):

   # an example hinge loss

   n = pos_score.shape[0]

   return (neg_score.view(n, -1) - pos_score.view(n, -1) + 
1).clamp(min=0).mean()

in_features = G.ndata["feat"].shape[1]

model = Model(in_features, 256, 1)

opt = torch.optim.Adam(model.parameters())

for input_nodes, positive_graph, negative_graph, blocks in dataloader:

   blocks = [b for b in blocks]

   input_features = blocks[0].srcdata['feat']

   # inference and loss computation

   pos_score, neg_score = model(positive_graph, negative_graph, blocks, 
input_features)

   loss = compute_loss(pos_score, neg_score)

   print(loss)

   opt.zero_grad()

   loss.backward()

   opt.step()

Notice that we skipped the validation part to improve readability. However, similar to the  

standard PyTorch training loop, you can implement it by defining a proper data loader and calling 

it in the training loop.

Be aware that, at the time of writing, DGL has just discontinued support on Darwin 

and Windows platforms, applying to versions higher than 2.2.1. In the following, we 

will often make use of version 2.4.0+. If you are running on one of the unsupported 

platforms, we recommend using the Docker images provided with the book.
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Summary
In this chapter, you have seen an introduction to neural networks and how they can be used 

in practice using popular frameworks like TensorFlow and PyTorch. You have seen how to  

translate those concepts into the graph domain, and you have learned the basics of three modern  

frameworks for deep learning on graphs: PyG, StellarGraph, and DGL. It is worth noting that some 

concepts may seem unclear at this point. Don’t worry! In the next chapters, all these concepts 

will be examined in more detail.

Get ready to embark on our journey into the GraphML landscape as we explore Unsupervised 

Graph Learning in the next chapter!



Part 2
Machine Learning on 

Graphs
In this part, you will be introduced to the main existing machine learning models for graph  

representation learning: their purpose, how they work, and how they can be implemented.

This part comprises the following chapters:

•	 Chapter 4, Unsupervised Graph Learning

•	 Chapter 5, Supervised Graph Learning

•	 Chapter 6, Solving Common Graph-Based Machine Learning Problems





4
Unsupervised Graph Learning
Unsupervised machine learning refers to the subset of machine learning algorithms that do not 

exploit any target information during training. Instead, they work on their own to find clusters, 

discover patterns, detect anomalies, and solve many other problems for which there is no teacher 

and no correct answer known a priori.

As per many other machine learning algorithms, unsupervised models have found large  

applications in the graph representation learning domain. Indeed, they represent an extremely 

useful tool for solving various downstream tasks, such as node classification and community 

detection, among others.

In this chapter, an overview of recent unsupervised graph embedding methods will be provided. 

When given a graph, the goal of these techniques is to automatically learn a latent representation 

of it, in which the key structural components are somehow preserved.

The following topics will be covered in this chapter:

•	 The unsupervised graph embedding roadmap

•	 Shallow embedding methods

•	 Autoencoders

•	 Graph neural networks

Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter04. Please refer to the Practical exercises section of 

Chapter 1, Getting Started with Graphs, for guidance on how to set up the environment to run the 

examples in this chapter, using either Poetry, pip, or docker.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter04
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter04
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For the more complex data visualization tasks provided in this chapter, Gephi (https://gephi.

org/) may also be required. The installation manual is available here: https://gephi.org/users/

install/.

The unsupervised graph embedding roadmap
Unsupervised machine learning involves algorithms that can be trained without the need for 

manually annotated data, making them especially valuable for identifying hidden structures 

and relationships in complex graph networks. Most of these models rely only on information in 

the adjacency matrix and the node features, without any knowledge of the downstream machine 

learning task.

How can this be done? One of the most common approaches is to learn embeddings that preserve 

the graph structure. The learned representation is usually optimized so that it can be used to 

reconstruct the pair-wise node similarity, for example, the adjacency matrix. These techniques 

bring an important feature: the learned representation can encode latent relationships among 

nodes or graphs, allowing us to discover hidden and complex novel patterns.

Many algorithms have been developed in relation to unsupervised graph machine learning 

techniques. However, as previously reported by different scientific papers (https://arxiv.org/

abs/2005.03675), those algorithms can be grouped into three macro-groups: shallow embedding 

methods, autoencoders, and Graph Neural Networks (GNNs), as described in the following chart:

Figure 4.1: The hierarchical structure of the different unsupervised embedding algorithms 
described in this book

https://gephi.org/
https://gephi.org/
https://gephi.org/users/install/
https://gephi.org/users/install/
https://arxiv.org/abs/2005.03675
https://arxiv.org/abs/2005.03675
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In the following sections, you will learn about the main principles behind each group of algorithms. 

We will try to provide the idea behind the most well-known algorithms in the field as well as how 

they can be used to solve real problems.

Shallow embedding methods
As already introduced in Chapter 2, Graph Machine Learning, with shallow embedding methods, 

we identify a set of algorithms that are able to learn and return only the embedding values for 

the learned input data.

In this section, we will explore two main categories of these methods: matrix factorization-based 

approaches and skip-gram-based approaches. Matrix factorization methods decompose the 

adjacency matrix to capture latent patterns in the graph, while skip-gram methods, inspired by 

natural language processing, learn embeddings by predicting the likelihood of node co-occur-

rences. We will dive into these techniques in detail and provide Python examples for each, using 

libraries such as Graph Embedding Methods (GEM), Node to Vector (Node2Vec), and karateclub.

Matrix factorization
Matrix factorization is a general decomposition technique widely used in different domains. The 

technique has become very popular, especially in the context of recommendation engines (e.g., 

see Zhou et al., 2008), where the matrix to be decomposed is the so-called user-product matrix, 

having users, 𝑢𝑢𝑖𝑖 , along the rows and products, 𝑝𝑝𝑗𝑗, along the columns, and the values in each cell, 𝑠𝑠𝑖𝑖𝑖𝑖𝑖, representing a score. Depending on the context, the score may have different forms: it may 

be a binary score representing whether the user bought a particular product, or it may also be a 

positive number representing how many times a user listened to a particular song. Interestingly, 

as we have seen in Chapter 1, Getting Started with Graphs, the user-product matrix could also be 

seen as the adjacency matrix of bipartite graphs, composed of two kinds of nodes: the users and 

the products/songs, and links (weighted) between them depending on whether the users bought 

a given product or listened to a given song. By re-mapping users and products into a Cartesian 

space (embeddings), matrix factorization techniques will provide a measure to quantify how 

similar users and/or products are, therefore providing the basis for a recommendation.

More generally, matrix factorization can be applied to graph structures to compute the  

various embeddings of a graph, and indeed a significant number of widely used graph embedding  

algorithms rely on this technique.
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We will start by providing a general introduction to the matrix factorization problem. After the 

introduction of the basic principles, we will describe two algorithms, namely graph factorization 

(GF) and High-Order Proximity Preserved Embedding (HOPE), which use matrix factorization 

to build the node embedding of a graph.

Let 𝑊𝑊 𝑊 𝑊𝑚𝑚𝑚𝑚𝑚 be the input data. Matrix factorization decomposes 𝑊𝑊 𝑊 𝑊𝑊 𝑊 𝑊𝑊, with 𝑉𝑉 𝑉 𝑉𝑚𝑚𝑚𝑚𝑚 
and 𝐻𝐻 𝐻 𝐻𝑑𝑑𝑑𝑑𝑑 called the source matrix and the abundance matrix, respectively, and d is the 

number of dimensions of the generated embedding space. The matrix factorization algorithm 

learns the V and H matrices by minimizing a loss function that can change according to the specific 

problem we want to solve. In its general formulation, the loss function is defined by computing 

the reconstruction error using the Frobenius norm as ‖𝑊𝑊 𝑊 𝑊𝑊 𝑊 𝑊𝑊‖𝐹𝐹2 .

Generally speaking, all the unsupervised embedding algorithms based on matrix factorization use 

the same principle. They all factorize an input graph expressed as a matrix in different components. 

The main difference between each method lies in the loss function used during the optimization 

process and the constraints/formulations posed for the V and H matrices. Indeed, different loss 

functions allow the creation of an embedding space that emphasizes specific properties of the 

input graph.

In the following sections, we will compare the different embedding algorithms using the same 

simple barbell network shown in Figure 4.2, to show the main similarities and differences. The 

graph can be generated with the following code snippet:

import networkx as nx

G = nx.barbell_graph(m1=10, m2=4)

When applied to this graph, all algorithms will output pairs of coordinates that will be plotted 

in an xy scatter plot. To help understand the results, we will color the points based on the color 

scheme depicted in the following figure:
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Figure 4.2: Color scheme used when comparing the different algorithms

Graph factorization
The GF algorithm was one of the first models to reach good computational performance in order to 

perform the node embedding of a given graph. By following the principle of matrix factorization 

that we previously described, the GF algorithm factorizes the adjacency matrix of a given graph.

Formally, let G = (V, E) be the graph for which we want to compute the node embedding and 

let 𝐴𝐴 𝐴 𝐴|𝑉𝑉|×|𝑉𝑉| be its adjacency matrix. The loss function (L) used in this matrix factorization 

problem is as follows: 𝐿𝐿 𝐿 12 ∑ (𝐴𝐴𝑖𝑖𝑖𝑖𝑖 − 𝑌𝑌𝑖𝑖𝑖𝑖𝑌𝑌𝑗𝑗𝑗𝑗𝑇𝑇)2(𝑖𝑖𝑖𝑖𝑖)∈𝐸𝐸 + 𝜆𝜆2∑‖𝑌𝑌𝑖𝑖𝑖𝑖‖2𝑖𝑖 

In the preceding equation, (𝑖𝑖𝑖 𝑖𝑖) ∈ 𝐸𝐸 represents one of the edges in G while 𝑌𝑌 𝑌 𝑌|𝑉𝑉|×𝑑𝑑 is the  

matrix containing the d-dimensional embedding. Each row of the matrix represents the  

embedding of a given node. Moreover, a regularization term (𝜆𝜆) of the embedding matrix is used 

to ensure that the problem remains well posed even in the absence of sufficient data.
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The loss function used in this method was mainly designed to improve GF performance and 

scalability. Indeed, the solution generated by this method could be noisy. Moreover, it should be 

noted, by looking at its matrix factorization formulation, that GF performs a strong symmetric 

factorization. This property is particularly suitable for undirected graphs, where the adjacency 

matrix is symmetric, but could be a potential limitation for directed graphs.

In the following code, we will show how to perform the node embedding for the barbell graph 

in Figure 4.2 using Python and the GEM library:

from gem.embedding.gf import GraphFactorization

gf = GraphFactorization(d=2, data_set=None, max_iter=10000, eta=1*10**-4, 
regu=1.0)

gf.learn_embedding(G)

embeddings = gf.get_embedding()

In the preceding example, the following have been done:

1.	 The GraphFactorization class is used to generate a d=2-dimensional embedding space.

2.	 The computation of the node embeddings of the input graph is performed using  

gf.learn_embedding(G).

3.	 The computed embeddings are extracted by calling the gf.get_embedding() method.

The results of the previous code are shown in the following graph:

Figure 4.3: Application of the GF algorithm to generate the embedding vectors for the nodes 
of the barbell graph shown in Figure 4.2. The color scheme depicted in Figure 4.2 has been 

used. Axes represent the first two latent directions of the embedding algorithm.
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From Figure 4.3, it is possible to see how nodes belonging to groups 1 and 3 are mapped together 

in the same region of space. Those points are separated by the nodes belonging to group 2. This 

mapping allows us to separate groups 1 and 3 from group 2 quite well. Unfortunately, there is no 

clear separation between groups 1 and 3.

Higher-order proximity preserved embedding
HOPE is another graph embedding technique based on the matrix factorization principle. This 

method allows for the preservation of higher-order proximity and does not force its embeddings 

to have any symmetric properties. Before starting to describe the method, let’s understand what 

first-order proximity and high-order proximity mean:

•	 First-order proximity: Given a graph, G = (V,E), where the edges have a weight, wij, for 

each vertex pair (vi,vj), we say they have a first-order proximity equal to wij if the edge (𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) ∈ 𝐸𝐸. Otherwise, the first-order proximity between the two nodes is 0.

•	 Second- and high-order proximity: With the second-order proximity, we can capture the 

two-step relations between each pair of vertices. For each vertex pair (vi,vj), we can see 

the second-order proximity as a two-step transition from vi to vj. High-order proximity 

generalizes this concept and allows us to capture a more global structure. As a consequence, 

high-order proximity can be viewed as a k-step (k ≥ 3) transition from vi to vj.

Given the definition of proximity, we can now describe the HOPE method. Formally, let G = (V, E) 

be the graph we want to compute the embedding for. The loss function (L) used by this problem 

is as follows: 𝐿𝐿 𝐿 𝐿 𝐿𝐿𝐿 𝐿 𝐿𝐿𝑆𝑆  × 𝑌𝑌𝑡𝑡𝑇𝑇‖𝐹𝐹2 

In the preceding equation, 𝑆𝑆 𝑆 𝑆|𝑉𝑉|×|𝑉𝑉| is a similarity matrix generated from graph G and its 

adjacency matrix 𝐴𝐴 𝐴 𝐴|𝑉𝑉|×|𝑉𝑉|, and 𝑌𝑌𝑆𝑆 ∈ ℝ|𝑉𝑉|×𝑑𝑑 and 𝑌𝑌𝑡𝑡 ∈ ℝ|𝑉𝑉|×𝑑𝑑 are two embedding matrices 

representing a d-dimensional embedding space. In more detail, YS represents the source embed-

ding and Yt represents the target embedding.

HOPE uses those two matrices in order to capture asymmetric proximity in directed networks 

where the direction from a source node and a target node is present. The final embedding matrix, 

Y, is obtained by simply concatenating, column-wise, the YS and Yt matrices. Due to this operation, 

the final embedding space generated by HOPE will have 2 x d dimensions.

As we already stated, the S matrix is a similarity matrix obtained from the original graph, G. The 

goal of S is to obtain high-order proximity information. Formally, it is computed as S = Mg . Ml, 

where Mg and Ml are both polynomials of matrices.
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In its original formulation, the authors of HOPE suggested different ways of computing Mg and 

Ml. Here, we report a common and easy method of computing those matrices, Adamic-Adar (AA). 

In this formulation, Mg = I (the identity matrix) while Ml = ADA, where D is a diagonal matrix 

(inverted) computed as  𝐷𝐷𝑖𝑖𝑖𝑖 = 1(∑ (𝐴𝐴𝑖𝑖𝑖𝑖+𝐴𝐴𝑗𝑗𝑗𝑗)𝑗𝑗 ). Other formulations to compute Mg and Ml are the 

Katz index, Rooted PageRank (RPR), and Common Neighbors (CN).

In the following code, we will show you how to perform the node embedding for the barbell graph 

in Figure 4.2 using Python and the GEM library:

from gem.embedding.hope import HOPE

gf = HOPE(d=4, beta=0.01)

gf.learn_embedding(G)

embeddings = gf.get_embedding()

The preceding code is similar to the one used for GF. The only difference is in the class initialization 

since here we use HOPE. According to the implementation provided by GEM, the d parameter, 

representing the dimension of the embedding space, will define the number of columns of the 

final embedding matrix, Y, obtained after the column-wise concatenation of Ys and Yt.

As a consequence, the number of columns of Ys and Yt is defined by the floor division (the //  

operator in Python) of the value assigned to d. The results of the code are shown in the following 

graph:

Figure 4.4: Application of the HOPE algorithm to generate the embedding vector for the nodes 
of the barbell graph shown in Figure 4.2. The color scheme depicted in Figure 4.2 has been 

used. Axes represent the first two latent directions of the embedding algorithm.
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In this case, the graph is undirected and thus there is no difference between the source and target 

nodes. Figure 4.4 shows the first two dimensions of the embeddings matrix representing Ys. It 

is possible to see how the embedding space generated by HOPE provides, in this case, a better 

separation of the different nodes.

Graph representation with global structure information
Graph representation with global structure information (GraphRep), such as HOPE, allows us to 

preserve higher-order proximity without forcing its embeddings to have symmetric properties. 

Formally, let G = (V, E) be the graph for which we want to compute the node embeddings and 𝐴𝐴 𝐴 𝐴|𝑉𝑉|×|𝑉𝑉| be its adjacency matrix. The loss function (L) used by this problem is as follows:𝐿𝐿𝑘𝑘 = ‖𝑋𝑋𝑘𝑘 − 𝑌𝑌𝑠𝑠𝑘𝑘 × 𝑌𝑌𝑡𝑡𝑘𝑘𝑇𝑇‖𝐹𝐹2    1 ≤ 𝑘𝑘 𝑘 𝑘𝑘

In the preceding equation, 𝑋𝑋𝑘𝑘 ∈ ℝ|𝑉𝑉|×|𝑉𝑉| is a matrix generated from graph G in order to get the 

kth order of proximity between nodes.𝑌𝑌𝑠𝑠𝑘𝑘 ∈ ℝ|𝑉𝑉|×𝑑𝑑 and 𝑌𝑌𝑡𝑡𝑘𝑘 ∈ ℝ|𝑉𝑉|×𝑑𝑑 are two embedding matrices representing a d-dimensional  

embedding space of the kth order of proximity for the source and target nodes, respectively.

The Xk matrix is computed according to the following equation: 𝑋𝑋𝑘𝑘 = ∏ (𝐷𝐷−1𝐴𝐴𝐴𝑘𝑘 . Here, D is a 

diagonal matrix known as the degree matrix computed using the following equation:

𝐷𝐷𝑖𝑖𝑖𝑖 = {∑ 𝐴𝐴𝑖𝑖𝑖𝑖,   𝑖𝑖 𝑖 𝑖𝑖𝑝𝑝0,             𝑖𝑖 𝑖 𝑖𝑖𝑖𝑋𝑋1 = 𝐷𝐷−1𝐴𝐴 represents the (one-step) probability transition matrix, where 𝑋𝑋𝑖𝑖𝑖𝑖1  is the probability of 

a transition from vi to vertex vj within one step. In general, for a generic value of k, 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘  represents 

the probability of a transition from vi to vertex vj within k steps.

For each order of proximity, k, an independent optimization problem is fitted. All the k embedding 

matrices generated are then column-wise concatenated to get the final source embedding matrices.

In the following code, we will show how to perform the node embedding for the barbell graph 

in Figure 4.2 using Python and the karateclub library:

from karateclub.node_embedding.neighbourhood.grarep import GraRep

gr = GraRep(dimensions=2, order=3)

gr.fit(G)

embeddings = gr.get_embedding()
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We initialize the GraRep class from the karateclub library. In this implementation, the dimensions 

parameter represents the dimension of the embedding space, while the order parameter defines 

the maximum number of orders of proximity between nodes. The number of columns of the  

final embedding matrix (stored, in the example, in the embeddings variable) is dimension*order, 

since, as we said, for each proximity order an embedding is computed and concatenated in the 

final embedding matrix.

Since two dimensions are computed in the example, embeddings[:,:2] represents the embedding 

obtained for k=1, embeddings[:,2:4] for k=2, and embeddings[:,4:] for k=3. The results of the 

code are shown in the following graphs:

Figure 4.5: Application of the GraphRep algorithm to generate the embedding vectors for 
different values of k for the nodes of the barbell graph shown in Figure 4.2. The color scheme 
depicted in Figure 4.2 has been used. Axes represent the first two latent directions of the 

embedding algorithm.

From the preceding graphs, it is easy to see how different orders of proximity allow us to get 

different embeddings. Since the input graph is quite simple, in this case, already with k=1, a 

well-separated embedding space is obtained. The nodes belonging to groups 1 and 3 in all the 

proximity orders have the same embedding values (they are overlapping in the scatter plot).

Notice that the superior performance of k=1 can be attributed to the differences in how  

proximity is captured. While GF uses a regularization term to control the complexity of the model, 

this may oversimplify the representation in some cases, leading to less distinct embeddings. In 

contrast, the k=1 embedding focuses on local relationships, which might be sufficient to capture the  

necessary structure in this simple graph.
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In this section, we have described some matrix factorization methods for unsupervised graph 

embedding. In the next section, we will introduce a different way of performing unsupervised 

graph embedding using skip-gram models.

Skip-gram
In this section, we will provide a quick description of the skip-gram model. Since it is widely used 

by different embedding algorithms, a high-level description is needed to better understand the 

different methods. Before going deep into a detailed description, let’s look at a brief overview.

The skip-gram model is a simple neural network with one hidden layer trained in order to predict 

the probability of a given word being present when one or more input words are present. The 

neural network is trained by building the training data using a text corpus as a reference. This 

process is described in the following chart:

Figure 4.6: Example of the generation of training data from a given corpus. In the colored 
boxes are the target words. In the white boxes are the context words identified by a window 

size of length 2

The example described in Figure 4.6 shows how the algorithm to generate the training data works. 

A target word is selected and a rolling window of fixed size w is built around that word. The words 

inside the rolling windows are known as context words. Multiple pairs of (target word, context word) 

are then built according to the words inside the rolling window.

Once the training data is generated from the whole corpus, the skip-gram model is trained to 

predict the probability of a word being a context word for the given target. During its training, the 

neural network learns a compact representation of the input words. This is why the skip-gram 

model is also known as Word to Vector (Word2Vec).
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The structure of the neural network representing the skip-gram model is described in the  

following chart:

Figure 4.7: Structure of the neural network of the skip-gram model. The number of d neurons 
in the hidden layer represents the final size of the embedding space

The input of the neural network is a binary vector of size m. Each element of the vector represents a 

word in the dictionary of the language we want to embed the words in. When, during the training 

process, a (target word, context word) pair is given, the input array will have 0 in all its entries with 

the exception of the entry representing the target word, which will be equal to 1. The hidden layer 

has d neurons. The hidden layer will learn the embedding representation of each word, creating 

a d-dimensional embedding space.

Finally, the output layer of the neural network is a dense layer of m neurons (the same size as the 

input vector) with a softmax activation function. Each neuron represents a word in the dictionary. 

The value assigned by the neuron corresponds to the probability of that word being “related” to 

the input word. Since softmax can be hard to compute when the size of m increases, a hierarchical 

softmax approach is always used.

The final goal of the skip-gram model is not to actually learn the task we previously described 

but to build a compact d-dimensional representation of the input words. Thanks to this  

representation, it is possible to easily extract an embedding space for the words using the weight 

of the hidden layer. Another common approach to creating a skip-gram model, which will not be 

described here, is context-based: Continuous Bag-of-Words (CBOW).
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Since the basic concepts behind the skip-gram model have been introduced, we can start to 

describe a series of unsupervised graph embedding algorithms built upon this model. Generally 

speaking, all the unsupervised embedding algorithms based on the skip-gram model use the 

same principle.

Starting from an input graph, they extract from it a set of walks. Those walks can be seen as a 

text corpus where each node represents a word. Two words (representing nodes) are near each 

other in the text if they are connected by an edge in a walk. The main difference between each 

method lies in the way those walks are computed. Indeed, as we will see, different walk generation  

algorithms can emphasize particular local or global structures of the graph.

DeepWalk
The DeepWalk algorithm generates the node embedding of a given graph using the skip-gram 

model. In order to provide a better explanation of this model, we need to introduce the concept 

of random walks.

Let G be a graph and vi be a vertex selected as the starting point. We select a neighbor of vi at 

random and move toward it. From this point, we randomly select another point to move toward. 

This process is repeated t times. The random sequence of t vertices selected in this way is a random 

walk of length t. It is worth mentioning that the algorithm used to generate the random walks 

does not impose any constraint on how they are built. As a consequence, there is no guarantee 

that the local neighborhood of the node is well preserved.

Using the notion of random walks, the DeepWalk algorithm generates a random walk of a size of 

at most t for each node. Those random walks will be given as input to the skip-gram model. The 

embedding generated using skip-gram will be used as the final node embedding. In the following 

figure (Figure 4.8), we can see a step-by-step graphical representation of the algorithm:

Figure 4.8: All the steps used by the DeepWalk algorithm to generate the node embedding 
of a given graph
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Here is a step-by-step explanation of the algorithm graphically described in the preceding chart:

1.	 Random walk generation: For each node of input graph G, a set of 𝛾𝛾 random walks with 

a fixed maximum length (t) is computed. It should be noted that the length t is an upper 

bound. There are no constraints forcing all the paths to have the same length, especially 

in direct graphs where the random walks may end up on dead ends, i.e., nodes with no 

out-going edges.

2.	 Skip-gram training: Using all the random walks generated in the previous step, a  

skip-gram model is trained. As we described earlier, the skip-gram model works on words 

and sentences. When a graph is given as input to the skip-gram model, as visible in Figure 

4.8, a graph can be seen as an input text corpus, while a single node of the graph can be 

seen as a word of the corpus.

3.	 A random walk can be seen as a sequence of words (a sentence). The skip-gram is then 

trained using the “fake” sentences generated by the nodes in the random walk. The  

parameters for the skip-gram model previously described (window size, w, and embed 

size, d) are used in this step.

4.	 Embedding generation: The information contained in the hidden layers of the trained 

skip-gram model is used in order to extract the embedding of each node.

In the following code, we will show how to perform the node embedding for the barbell graph 

in Figure 4.2 using Python and the karateclub library:

from karateclub.node_embedding.neighbourhood.deepwalk import DeepWalk

dw = DeepWalk(dimensions=2)

dw.fit(G)

embeddings = dw.get_embedding()

The code is quite simple. We initialize the DeepWalk class from the karateclub library. In this 

implementation, the dimensions parameter represents the dimension of the embedding space. 

Other parameters worth mentioning that the DeepWalk class accepts are as follows:

•	 walk_number: The number of random walks to generate for each node

•	 walk_length: The length of the generated random walks

•	 window_size: The window size parameter of the skip-gram model

Finally, the model is fitted on graph G using dw.fit(G) and the embeddings are extracted using 

dw.get_embedding().
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The results of the code are shown in the following figure:

Figure 4.9: Application of the DeepWalk algorithm to generate the embedding vectors for the 
nodes of the barbell graph shown in Figure 4.2. The color scheme depicted in Figure 4.2 has 

been used. Axes represent the first two latent directions of the embedding algorithm.

From the previous graph, we can see how DeepWalk is able to separate region 1 from region 3. 

Those two groups are contaminated by the nodes belonging to region 2. Indeed, for those nodes, 

a clear distinction is not visible in the embedding space.

Node2Vec
The Node2Vec algorithm can be seen as an extension of DeepWalk. Indeed, as with DeepWalk, 

Node2Vec also generates a set of random walks used as input to a skip-gram model. Once trained, 

the hidden layers of the skip-gram model are used to generate the embedding of the node in the 

graph. The main difference between the two algorithms lies in the way the random walks are 

generated.

Indeed, if DeepWalk generates random walks without using any bias, in Node2Vec a new  

technique to generate biased random walks on the graph is introduced. The algorithm to  

generate the random walks combines graph exploration by merging Breadth-First Search (BFS) 

and Depth-First Search (DFS). The way those two algorithms are combined in the random walk’s 

generation is regularized by two parameters, p and q. p defines the probability of a random walk 

getting back to the previous node, while q defines the probability that a random walk can pass 

through a previously unseen part of the graph.
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Due to this combination, Node2Vec can preserve high-order proximities by preserving local 

structures in the graph as well as global community structures. This new method of random 

walk generation allows solving the limitation of DeepWalk preserving the local neighborhood 

properties of the node.

In the following code, we will show how to perform the node embedding for the barbell graph 

in Figure 4.2 using Python and the node2vec library:

from node2vec import Node2Vec

draw_graph(G)

node2vec = Node2Vec(G, dimensions=2)

model = node2vec.fit(window=10)

embeddings = model.wv

For Node2Vec, the code is straightforward. We initialize the Node2Vec class from the node2vec 

library. In this implementation, the dimensions parameter represents the dimension of the  

embedding space. The model is then fitted using node2vec.fit(window=10). Finally, the  

embeddings are obtained using model.wv.

It should be noted that model.wv is an object of the Word2VecKeyedVectors class. In order to get 

the embedding vector of a specific node with nodeid as the ID, we can use the trained model, as 

follows: model.wv[str(nodeId)]. Other parameters worth mentioning that the Node2Vec class 

accepts are as follows:

•	 num_walks: The number of random walks to generate for each node

•	 walk_length: The length of the generated random walks

•	 p, q: The p and q parameters of the random walk’s generation algorithm

The results of the code are shown in Figure 4.10:
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Figure 4.10: Application of the Node2Vec algorithm to generate the embedding vectors for 
the nodes of the barbell graph shown in Figure 4.2. The color scheme depicted in Figure 4.2 

has been used. Axes represent the first two latent directions of the embedding algorithm.

As is visible from Figure 4.10, Node2Vec allows us to obtain a better separation between nodes in 

the embedding space compared to DeepWalk. Regions 1 and 3 are well clustered in two regions 

of space. Region 2 instead is well placed in the middle of the two groups without any overlap.

Edge2Vec
Contrary to the other embedding function, the Edge to Vector (Edge2Vec) algorithm generates 

the embedding space on edges, instead of nodes. This algorithm is a simple side effect of the 

embedding generated by using Node2Vec. The main idea is to use the node embedding of two 

adjacent nodes to perform some basic mathematical operations in order to extract the embedding 

of the edge connecting them.
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Formally, let vi and vj be two adjacent nodes and let f(vi) and f(vj) be their embeddings  

computed with Node2Vec. The operators described in Table 4.1 can be used in order to compute the  

embedding of their edge:

Table 4.1: Edge embedding operators with their equation and class name in the Node2Vec 
library

In the following code, we will show how to perform the edge embedding using the Node2Vec 

embedding of the barbell graph shown in Figure 4.2 using Python:

from node2vec.edges import HadamardEmbedder

embedding = HadamardEmbedder(keyed_vectors=model.wv)

The code is quite simple. The HadamardEmbedder class is instantiated with only the keyed_vectors 

parameter. The value of this parameter is the embedding model generated by Node2Vec. In order 

to use other techniques to generate the edge embedding, we just need to change the class and 

select one from those listed in Table 4.1. An example of the application of this algorithm is shown 

in the following figure, where each label represents the corresponding source and target IDs, and 

the fill and stroke colors are inherited from the source and target nodes, respectively.
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Figure 4.11: Application of the Edge2Vec algorithm to the Node2Vec embeddings of the barbell 
graph shown in Figure 4.2. Each node label presents the corresponding source and target IDs 
in the source-target format, and the color coding refers to the one shown in Figure 4.2, where 
the fill and stroke colors are based on the source and target, respectively. Axes represent the 

first two latent directions of the embedding algorithm.
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From Figure 4.11, we can see how different embedding methods generate completely different 

embedding spaces. AverageEmbedder and HadamardEmbedder, in this example, generate well- 

separated embeddings for regions 1, 2, and 3.

For WeightedL1Embedder and WeightedL2Embedder, however, the embedding space is less well 

separated: the embedding is only able to differentiate the terminal edges attached to the cliques, 

whereas all the other nodes fall approximately on the same region.

Graph2Vec
The methods we previously described generated the embedding space for each node or edge on 

a given graph. Graph to Vector (Graph2Vec) generalizes this concept and generates embeddings 

for the whole graph.

Given a set of graphs, the Graph2Vec algorithms generate an embedding space where each 

point represents a graph. This algorithm generates its embedding using an evolution of the  

Word2Vec skip-gram model known as Document to Vector (Doc2Vec). We can graphically see a  

simplification of this model in Figure 4.12:

Figure 4.12: Simplified graphical representation of the Doc2Vec skip-gram model. The number 
of d neurons in the hidden layer represents the final size of the embedding space
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Compared to the simple Word2Vec, Doc2Vec also accepts another binary array representing the 

document containing the input word. Given a “target” document and a “target” word, the model 

then tries to predict the most probable “context” word with respect to the input “target” word 

and document.

With the introduction of the Doc2Vec model, we can now describe the Graph2Vec algorithm. The 

main idea behind this method is to view an entire graph as a document and each of its subgraphs, 

generated as an ego graph (see Chapter 1, Getting Started with Graphs) of each node, as words that 

comprise the document.

In other words, a graph is composed of subgraphs as a document is composed of sentences.  

According to this description, the algorithm can be summarized into the following steps:

1.	 Subgraph generation: A set of rooted subgraphs is generated around every node.

2.	 Doc2Vec training: The Doc2Vec skip-gram is trained using the subgraphs generated by 

the previous step.

3.	 Embedding generation: The information contained in the hidden layers of the trained 

Doc2Vec model is used in order to extract the embedding of each node and graph.

In the following code, as we already did in Chapter 2, Graph Machine Learning, we will show how to 

perform the node embedding of a set of networkx graphs using Python and the karateclub library:

import matplotlib.pyplot as plt
from karateclub import Graph2Vec
n_graphs = 20
def generate_random():
    n = random.randint(6, 20)
    k = random.randint(5, n)
    p = random.uniform(0, 1)
    return nx.watts_strogatz_graph(n,k,p)
Gs = [generate_random() for x in range(n_graphs)]
model = Graph2Vec(dimensions=2)
model.fit(Gs)
embeddings = model.get_embedding()

In this example, the following have been done:

1.	 20 Watts-Strogatz graphs have been generated with random parameters.

2.	 We then initialize the Graph2Vec class from the karateclub library with two  

dimensions. In this implementation, the dimensions parameter represents the  

dimension of the embedding space.
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3.	 The model is then fitted on the input data using model.fit(Gs).

4.	 The vector containing the embeddings is extracted using model.get_embedding().

The results of the code are shown in the following figure:

Figure 4.13: Application of the Graph2Vec algorithm to a graph (left) to generate the embed-
ding vector of its nodes (right) using different methods

From Figure 4.13, it is possible to see the embedding space generated for the different graphs.

In this section, we described different shallow embedding methods based on matrix  

factorization and the skip-gram model. However, in the scientific literature, a lot of unsupervised  

embedding algorithms exist, such as Laplacian methods. We refer those of you who are interested in  

exploring those methods to look at the paper Machine Learning on Graphs: A Model and  

Comprehensive Taxonomy, available at https://arxiv.org/pdf/2005.03675.pdf.

We will continue our description of the unsupervised graph embedding method in the next  

sections. We will describe more complex graph embedding algorithms based on autoencoders.

Autoencoders
Autoencoders are an extremely powerful tool that can effectively help data scientists to deal 

with high-dimensional datasets. Although first presented around 30 years ago, in recent years,  

autoencoders have become more and more widespread in conjunction with the general rise 

of neural network-based algorithms. Besides allowing us to compact sparse representations, 

they can also be at the base of generative models, representing the first inception of the famous  

Generative Adversarial Network (GAN), which is, using the words of Geoffrey Hinton:

https://arxiv.org/pdf/2005.03675.pdf
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Indeed, Generative AI has become very popular in recent years, thanks to the astonishing  

results provided by generative models, especially in image generation (such as DALL-E) and text  

generation (such as ChatGPT).

An autoencoder is a neural network where the inputs and outputs are basically the same, but that 

is characterized by a small number of units in the hidden layer. Loosely described, it is a neural 

network that is trained to reconstruct its inputs using a significantly lower number of variables 

and/or degree of freedom.

Since an autoencoder does not need a labeled dataset, it can be seen as an example of unsupervised 

learning and a dimensionality-reduction technique. However, different from other techniques 

such as Principal Component Analysis (PCA) and matrix factorization, which we discussed in 

the previous section, autoencoders can learn non-linear transformation thanks to the non-linear 

activation functions of their neurons:

Figure 4.14: Diagram of the autoencoder structure

“The most interesting idea in the last 10 years in machine learning”
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Figure 4.14 shows a simple example of an autoencoder. You can see how the autoencoder can 

generally be seen as composed of two parts:

•	 An encoder network that processes the input through one or more units and maps it into 

an encoded representation that reduces the dimension of the inputs (under-complete 

autoencoders) and/or constrains its sparsity (over-complete regularized autoencoders)

•	 A decoder network that reconstructs the input signal from the encoded representation 

of the middle layer

The encoder-decoder structure is then trained to minimize the ability of the full network to  

reconstruct the input. In order to completely specify an autoencoder, we need a loss function. The 

error between the inputs and the outputs can be computed using different metrics, and indeed 

the choice of the correct form for the “reconstruction” error is a critical point when building an 

autoencoder. Some common choices for the loss functions that measure the reconstruction error 

are mean square error, mean absolute error, cross-entropy, and KL divergence.

In the following sections, we will show you how to build an autoencoder, starting with some 

basic concepts, and then apply those concepts to graph structures.

Our first autoencoder
Let’s start by implementing an autoencoder in its simplest form, that is, a simple feed-forward 

network trained to reconstruct its input (notice in autoencoders the image label is not used; we 

only aim to compress and decompress the input). We’ll apply this to the Fashion-MNIST dataset 

already presented in Chapter 3, Neural Networks and Graphs.

First, let’s load the dataset. We will be using the Keras library for our example:

from tensorflow.keras.datasets import fashion_mnist

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

And let’s rescale the inputs:

x_train = x_train.astype('float32') / 255.

x_test = x_test.astype('float32') / 255.

Now that we have imported the inputs, we can build our autoencoder network by creating the 

encoder and the decoder. We will be doing this using the Keras functional API, which provides 

more generality and flexibility compared to the so-called Sequential API. We start by defining 

the encoder network:
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from tensorflow.keras.layers import Conv2D, Dropout, MaxPooling2D, 
UpSampling2D, Input
input_img = Input(shape=(28, 28, 1))
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)

Our network is composed of a stack of three levels of the same pattern composed of the same 

two-layer building block:

•	 Conv2D, a two-dimensional convolutional kernel that is applied to the input and  

effectively corresponds to having weights shared across all the input neurons. After  

applying the convolutional kernel, the output is transformed using the ReLU activation 

function. This structure is replicated for n hidden planes, with n being 16 in the first stacked 

layer and 8 in the second and third stacked layers.

•	 MaxPooling2D, which down-samples the inputs by taking the maximum value over the 

specified window (2x2 in this case).

Using the Keras API, we can also have an overview of how the layers transformed the inputs 

using the Model class, which converts the tensors into a user-friendly model ready to be used 

and explored:

Model(input_img, encoded).summary()

This provides a summary of the encoder network:

Model: "model_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #  
=================================================================
input_1 (InputLayer)         [(None, 28, 28, 1)]       0        
_________________________________________________________________
conv2d (Conv2D)              (None, 28, 28, 16)        160      
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 14, 14, 16)        0        
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 14, 14, 8)         1160     
_________________________________________________________________
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max_pooling2d_1 (MaxPooling2 (None, 7, 7, 8)           0        
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 7, 7, 8)           584      
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 4, 4, 8)           0        
=================================================================
Total params: 1,904
Trainable params: 1,904
Non-trainable params: 0
_________________________________________________________________

As can be seen, at the end of the encoding phase, we have a (4, 4, 8) tensor, which is more than 

six times smaller than our original initial inputs (28x28). We can now build the decoder network. 

Note that the encoder and decoder do not need to have the same structure and/or shared weights:

x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)

x = UpSampling2D((2, 2))(x)

x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)

x = UpSampling2D((2, 2))(x)

x = Conv2D(16, (3, 3), activation='relu')(x)

x = UpSampling2D((2, 2))(x)

decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

In this case, the decoder network resembles the encoder structure where the down-sampling of 

the input achieved using the MaxPooling2D layer has been replaced by the UpSampling2D layer, 

which basically repeats the input over a specified window (2x2 in this case, effectively doubling 

the tensor in each direction).

We have now fully defined the network structure with the encoder and decoder layers. In order 

to completely specify our autoencoder, we also need to specify a loss function. Moreover, to build 

the computational graph, Keras also needs to know which algorithms should be used in order to 

optimize the network weights. Both are provided to Keras when compiling the model:

autoencoder = Model(input_img, decoded)

autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

We can now finally train our autoencoder. Keras Model classes provide APIs that are similar to 

scikit-learn, with a fit method to be used to train the neural network. Note that, owing to the 

nature of the autoencoder, we are using the same information as the input and output of our 

network:
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autoencoder.fit(x_train, x_train,

                epochs=50,

                batch_size=128,

                shuffle=True,

                validation_data=(x_test, x_test))

Once the training is finished, we can examine the ability of the network to reconstruct the inputs 

by comparing input images with their reconstructed version, which can be easily computed using 

the predict method of the Keras Model class as follows:

decoded_imgs = autoencoder.predict(x_test)

In Figure 4.15, we show the reconstructed images. As you can see, the network is quite good at 

reconstructing unseen images, especially when considering the large-scale features. Details might 

have been lost in the compression (see, for instance, the logos on the T-shirts), but the overall 

relevant information has indeed been captured by our network:

Figure 4.15: Examples of the reconstruction done on the test set by the trained autoencoder

It can also be very interesting to represent the encoded version of the images in a  

two-dimensional plane using T-SNE:

from tensorflow.keras.layers import Flatten

embed_layer = Flatten()(encoded)

embeddings = Model(input_img, embed_layer).predict(x_test)

tsne = TSNE(n_components=2)

emb2d = tsne.fit_transform(embeddings)

x, y = np.squeeze(emb2d[:, 0]), np.squeeze(emb2d[:, 1])
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The coordinates provided by T-SNE are shown in Figure 4.16, colored by the class the sample  

belongs to. The clustering of the different clothing can clearly be seen, particularly for some 

classes that are very well separated from the rest:

Figure 4.16: T-SNE transformation of the embeddings extracted from the test set, colored by 
the class that the sample belongs to

Autoencoders are, however, rather prone to overfitting, as they tend to re-create exactly the images 

of the training and not generalize well. In the following subsection, we will see how overfitting 

can be prevented in order to build more robust and reliable dense representations.

Denoising autoencoders
Besides allowing us to compress a sparse representation into a denser vector, autoencoders 

are also widely used to process a signal in order to filter out noise and extract only a relevant  

(characteristic) signal. This can be very useful in many applications, especially when identifying 

anomalies and outliers.
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Denoising autoencoders are a small variation of what has already been implemented. As described 

in the previous section, basic autoencoders are trained using the same image as input and output. 

Denoising autoencoders corrupt the input using some noise of various intensity, while keeping the 

same noise-free target. This could be achieved by simply adding some Gaussian noise to the inputs:

noise_factor = 0.1

x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, 
scale=1.0, size=x_train.shape)

x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, 
scale=1.0, size=x_test.shape)

x_train_noisy = np.clip(x_train_noisy, 0., 1.)

x_test_noisy = np.clip(x_test_noisy, 0., 1.)

The network can then be trained using the corrupted input, while for the output, the noise-free 

image is used:

noisy_autoencoder.fit(x_train_noisy, x_train,

                epochs=50,

                batch_size=128,

                shuffle=True,

                validation_data=(x_test_noisy, x_test))

Such an approach is generally valid when datasets are large and when the risk of overfitting the 

noise is rather limited. When datasets are smaller, an alternative to avoid the network “learning” 

the noise as well (thus learning the mapping between a static noisy image to its noise-free version) 

is to add training stochastic noise using a GaussianNoise layer.

Note that in this way, the noise may change between epochs and prevent the network from  

learning a static corruption superimposed onto our training set. In order to do so, we change the 

first layers of our network in the following way:

input_img = Input(shape=(28, 28, 1))

noisy_input = GaussianNoise(0.1)(input_img)

x = Conv2D(16, (3, 3), activation='relu', padding='same')(noisy_input)

The difference is that instead of having statically corrupted samples (that do not change in time), 

the noisy inputs now keep changing between epochs, thus avoiding the network learning the 

noise as well.
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The GaussianNoise layer is an example of a regularization layer, that is, a layer that helps reduce 

the overfitting of a neural network by inserting a random part in the network. GaussianNoise 

layers make models more robust and able to generalize better, avoiding autoencoders learning 

the identity function.

Another common example of a regularization layer is the dropout layers that effectively set to 

0 some of the inputs (at random with a probability, 𝜌𝜌0) and rescale the other inputs by a 
11−𝜌𝜌0 

factor in order to (statistically) keep the sum over all the units constant, with and without dropout.

Dropout corresponds to randomly killing some of the connections between layers in order to 

reduce output dependency to specific neurons. Always keep in mind that regularization layers 

are only active during training, while at test time they simply correspond to identity layers.

In Figure 4.17, we compare the network reconstruction of a noisy input (input) for the previous 

unregularized trained network and the network with a GaussianNoise layer. As can be seen 

(compare, for instance, the images of trousers), the model with regularization tends to develop 

stronger robustness and reconstructs the noise-free outputs:

Figure 4.17: Comparison with reconstruction for noisy samples. Top row: noisy input; middle 
row: reconstructed output using a vanilla autoencoder; bottom row: reconstructed output 

using a denoising autoencoder

Regularization layers are often used when dealing with deep neural networks that tend to overfit 

and are able to learn identity functions for autoencoders. Often, dropout or GaussianNoise layers 

are introduced, repeating a similar pattern composed of regularization and learnable layers that 

we usually refer to as stacked denoising layers.
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Graph autoencoders
Once the basic concepts of autoencoders are understood, we can turn to apply this framework to 
graph structures. If, on one hand, the network structure, decomposed into an encoder-decoder 
structure with a low-dimensional representation in between, still applies, the definition of the 
loss function to be optimized needs a bit of caution when dealing with networks. First, we need 
to adapt the reconstruction error to a meaningful formulation that can adapt to the peculiarities 
of graph structures.

When applying autoencoders to graph structures, the input and output of the network should 
be a graph representation, for instance, the adjacency matrix. The reconstruction loss could 
then be defined as the Frobenius norm of the difference between the input and output matrices. 
However, when applying autoencoders to such graph structures and adjacency matrices, two 

critical issues arise:

•	 Whereas the presence of links indicates a relation or similarity between two vertices, their 

absence does not generally indicate a dissimilarity between vertices.

•	 The adjacency matrix is extremely sparse and therefore the model will naturally tend to 

predict a 0 rather than a positive value.

To address such peculiarities of graph structures, when defining the reconstruction loss, we need 

to penalize more errors for the non-zero elements than for zero elements. This can be done using 

the following loss function:

ℒ2𝑛𝑛𝑛𝑛 =∑‖(𝐴̃𝐴𝑙𝑙 − 𝐴𝐴𝑖𝑖) ⊙ 𝑏𝑏𝑖𝑖‖𝑛𝑛
𝑖𝑖𝑖𝑖 

Here, 𝐴̃𝐴𝑙𝑙 represents the reconstructed adjacency matrix produced by the autoencoder, and 𝐴𝐴𝑖𝑖 
represents the original adjacency matrix for node i (adjacency vector). ⊙ is the Hadamard  

element-wise product, where 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝛽𝛽 𝛽 𝛽 if there is an edge between nodes i and j, and 0  

otherwise. The preceding loss guarantees that vertices that share a neighborhood (that is, their 

adjacency vectors are similar) will also be close in the embedding space. Thus, the preceding 

formulation will naturally preserve second-order proximity for the reconstructed graph.

On the other hand, you can also promote first-order proximity in the reconstructed graph, thus 

enforcing connected nodes to be close in the embedding space. This condition can be enforced 

by using the following loss:

ℒ1𝑠𝑠𝑠𝑠 = ∑ 𝑆𝑆𝑖𝑖𝑖𝑖‖𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖‖22𝑛𝑛
𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
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Here, yi and yj are the two representations of nodes i and j in the embedding space. The term 𝑆𝑆𝑖𝑖𝑖𝑖 represents the strength of the connection between nodes i and j. Typically, 𝑆𝑆𝑖𝑖𝑖𝑖 is derived 

from the adjacency matrix or other similarity measures, where a larger 𝑆𝑆𝑖𝑖𝑖𝑖 indicates a stronger 

or more important connection between the two nodes. This loss function forces neighboring 

nodes to be close in the embedding space. In fact, if two nodes are tightly connected, Sij will be 

large. As a consequence, their difference in the embedding space, ‖𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖‖22, should be limited  

(indicating the two nodes are close in the embedding space) to keep the loss function small. The 

two losses can also be combined into a single loss function, where, in order to prevent overfitting, a  

regularization loss can be added that is proportional to the norm of the weight coefficients:ℒ𝑡𝑡𝑡𝑡𝑡𝑡 = ℒ2𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼1𝑠𝑠𝑠𝑠 + 𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 = ℒ2𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼1𝑠𝑠𝑠𝑠 + 𝑣𝑣 𝑣 𝑣𝑣 𝑣𝐹𝐹2 

In the preceding equation, W represents all the weights used across the network. The preced-

ing formulation was proposed in 2016 by Wang et al., and it is now known as Structural Deep  

Network Embedding (SDNE).

Although the preceding loss could also be directly implemented with TensorFlow and Keras, you 

can already find this network integrated in the GEM package we referred to previously. As before, 

extracting the node embedding can be done similarly in a few lines of code, as follows:

G=nx.karate_club_graph()

sdne=SDNE(d=2, beta=5, alpha=1e-5, nu1=1e-6, nu2=1e-6,

          K=3,n_units=[50, 15,], rho=0.3, n_iter=10,

          xeta=0.01,n_batch=100,

          modelfile=['enc_model.json','dec_model.json'],

          weightfile=['enc_weights.hdf5','dec_weights.hdf5'])

sdne.learn_embedding(G)

embeddings = m1.get_embedding()

Although very powerful, these graph autoencoders encounter some issues when dealing with 

large graphs. For these cases, the input of our autoencoder is one row of the adjacency matrix 

that has as many elements as the nodes in the network. In large networks, this size can easily be 

of the order of millions or tens of millions.

In the next section, we describe a different strategy for encoding the network information that 

in some cases may iteratively aggregate embeddings only over local neighborhoods, making it 

scalable to large graphs.
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Graph neural networks
We introduced in Chapter 3, Neural Networks and Graphs, the concept of GNNs, a deep learning 

method that works on graph-structured data. It is now time to go into the details of how GNNs 

can be used for unsupervised learning. Similar to other techniques seen in this chapter (e.g.,  

matrix factorization), GNNs will also allow us to obtain embeddings of our graph elements (nodes, 

edges, and graphs). However, it is worth noting that different from shallow embeddings, some 

of the GNN techniques are inductive, and therefore allow the embeddings to also be applied to 

unseen data. 

As shown in the previous chapter, Convolutional Neural Networks (CNNs) are widely used in 

images to extract multi-scale localized spatial features that are exploited by deeper layers to 

construct more complex and highly expressive representations.

In recent years, it has been observed that concepts such as multi-layer and locality are also useful 

for processing graph-structured data. However, graphs are defined over a non-Euclidean space.

The original formulation of GNNs was proposed by Scarselli et al., back in 2009. It relies on the 

fact that each node can be described by its features and its neighborhood. Information coming 

from the neighborhood (which represents the concept of locality in the graph domain) can be 

aggregated and used to compute more complex and high-level features.

At the beginning, each node, vi, is associated with a state. Let’s start with a random embedding, ℎ𝑖𝑖𝑡𝑡 (ignoring node attributes for simplicity). At each iteration of the algorithm, nodes accumulate 

input from their neighbors using a simple neural network layer:ℎ𝑖𝑖𝑡𝑡 = ∑ 𝜎𝜎𝜎𝜎𝜎𝜎𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑣𝑣𝑣𝑣∈𝑁𝑁𝑁𝑁𝑁𝑖𝑖) 

Here, 𝑊𝑊 𝑊 𝑊𝑑𝑑𝑑𝑑𝑑 and 𝑏𝑏 𝑏 𝑏𝑑𝑑 are trainable parameters (where d is the dimension of the  

embedding), 𝜎𝜎 is a non-linear function, and t represents the tth iteration of the algorithm. 

The equation is applied recursively until a particular objective is reached. Note that, at each  

iteration, the previous state (computed at the previous iteration) of neighbors is exploited in order to  

compute the new state, similar to recurrent neural networks.

Starting from this first idea, several attempts have been made in recent years to re-address the 

problem of learning from graph data. In particular, variants of the previously described GNN have 

been proposed, with the aim of improving its representation learning capability. Some of them 

are specifically designed to process specific types of graphs, such as direct, indirect, weighted, 

unweighted, static, and dynamic.



Unsupervised Graph Learning140

Several modifications have been proposed for the propagation step (convolution, gate  

mechanisms, attention mechanisms, and skip connections, among others), with the aim of  

improving the representation at different levels. Also, different training methods have been  

proposed to improve learning.

There are essentially two types of convolutional operations for graph data, namely spectral 

approaches and non-spectral (spatial) approaches. The first, as the name suggests, defines 

convolution in the spectral domain (that is, decomposing graphs in a combination of simpler 

elements). Spatial convolution, on the other hand, formulates the convolution as aggregating 

feature information from neighbors.

Spectral graph convolution
Spectral approaches are related to spectral graph theory, the study of the characteristics of a 

graph in relation to the characteristic polynomial, eigenvalues, and eigenvectors of the matrices 

associated with the graph. The convolution operation is defined as the multiplication of a signal 

(node features) by a kernel. In more detail, it is defined in the Fourier domain by determining 

the eigendecomposition of the graph Laplacian (think about the graph Laplacian as an adjacency 

matrix normalized in a special way).

While this definition of spectral convolution has a strong mathematical foundation, the operation 

is computationally expensive. For this reason, several works have been done to approximate it in an 

efficient way. ChebNet by Defferrard et al., for instance, is one of the first seminal works on spectral 

graph convolution. Here, the operation is approximated by using the concept of the Chebyshev 

polynomial of order K (a special kind of polynomial used to efficiently approximate functions).

Here, K is a very useful parameter because it determines the locality of the filter. Intuitively, for K = 

1, only the node features are fed into the network. With K = 2, we average over two-hop neighbors 

(neighbors of neighbors) and so on.

Let 𝑋𝑋 𝑋 𝑋𝑁𝑁𝑁𝑁𝑁 be the matrix of node features, where N is the number of nodes. In classical neural 

network processing, this signal would be composed of layers of the following form:𝐻𝐻1 = 𝜎𝜎𝜎𝑋𝑋𝑋𝑋)
Here, 𝑊𝑊 𝑊 𝑊𝑁𝑁𝑁𝑁𝑁 is the layer weights and 𝜎𝜎 represents some non-linear activation function. The 

drawback of this operation is that it processes each node signal independently without taking 

into account connections between nodes. To overcome this limitation, a simple (yet effective) 

modification can be done, as follows: 𝐻𝐻1 = 𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴)
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By introducing the adjacency matrix, 𝐴𝐴 𝐴 𝐴𝑁𝑁𝑁𝑁𝑁, a new linear combination between each node 

and its corresponding neighbors is added. This way, the information depends only on the  

neighborhood and parameters are applied to all the nodes, simultaneously.

It is worth noting that this operation can be repeated in sequence several times, thus creating 

a deep network. At each layer, the node descriptors, X, will be replaced with the output of the 

previous layer, Hl-1, feeding the computation of Hl.

The preceding presented equation, however, has some limitations and cannot be applied as it 

stands. The first limitation is that by multiplying by A, we consider all the neighbors of the node 

but not the node itself. This problem can be easily overcome by adding self-loops in the graph, 

that is, adding the 𝐴̂𝐴 = 𝐴𝐴 𝐴 𝐴𝐴 identity matrix.

The second limitation is related to the adjacency matrix itself. Since it is typically not normalized, 

we will observe large values in the feature representation of high-degree nodes and small values 

in the feature representation of low-degree nodes. This will lead to several problems during 

training since optimization algorithms are often sensitive to feature scale. Several methods have 

been proposed for normalizing A.

In Kipf and Welling, 2017 (one of the well-known GCN models), for example, the normalization 

is performed by multiplying A by the diagonal node degree matrix D, such that all the rows sum to 

1: D-1A. More specifically, they used symmetric normalization (D-1/2AD-1/2), such that the proposed 

propagation rule becomes as follows:𝐻𝐻𝑙𝑙 = 𝜎𝜎𝜎𝜎̂𝜎−12𝐴̂𝐴𝐷̂𝐷−12𝑋𝑋𝑋𝑋)
Here, 𝐷̂𝐷 is the diagonal node degree matrix of 𝐴̂𝐴.

In the following example, we will create a GCN as defined in Kipf and Welling and apply this 

propagation rule for embedding a simple graph:

1.	 To begin, it is necessary to import all the Python modules. We will use networkx to load 

the barbell graph:

import networkx as nx

import numpy as np

G = nx.barbell_graph(m1=10,m2=4)
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2.	 To implement the GC propagation rule, we need an adjacency matrix representing G. Since 

this network does not have node features, we will use the 𝐼𝐼 𝐼 𝐼𝑁𝑁𝑁𝑁𝑁 identity matrix as 

the node descriptor:

A = nx.to_numpy_matrix(G)

I = np.eye(G.number_of_nodes())

3.	 We now add the self-loop and prepare the diagonal node degree matrix:

from scipy.linalg import sqrtm

A_hat = A + I

D_hat = np.array(np.sum(A_hat, axis=0))[0]

D_hat = np.array(np.diag(D_hat))

D_hat = np.linalg.inv(sqrtm(D_hat))

A_norm = D_hat @ A_hat @ D_hat

4.	 Our GCN will be composed of two layers. Let’s define the layers’ weights and the  

propagation rule. Layer weights, W, will be initialized using Glorot uniform initialization 

(even if other initialization methods can be also used, for example, by sampling from a 

Gaussian or uniform distribution):

def glorot_init(nin, nout):

     sd = np.sqrt(6.0 / (nin + nout))

     return np.random.uniform(-sd, sd, size=(nin, nout))

class GCNLayer():

  def __init__(self, n_inputs, n_outputs):

      self.n_inputs = n_inputs

      self.n_outputs = n_outputs

      self.W = glorot_init(self.n_outputs, self.n_inputs)

      self.activation = np.tanh

  def forward(self, A, X):

      self._X = (A @ X).T

      H = self.W @ self._X

      H = self.activation(H)

      return H.T # (n_outputs, N)

5.	 Finally, let’s create our network and compute the forward pass, that is, propagate the 

signal through the network:

gcn1 = GCNLayer(G.number_of_nodes(), 8)

gcn2 = GCNLayer(8, 4)
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gcn3 = GCNLayer(4, 2)

H1 = gcn1.forward(A_norm, I)

H2 = gcn2.forward(A_norm, H1)

H3 = gcn3.forward(A_norm, H2)

H3 now contains the embedding computed using the GCN propagation rule. Note that we chose 

2 as the number of outputs, meaning that the embedding is bi-dimensional and can be easily 

visualized. In Figure 4.18, you can see the output:

Figure 4.18: Application of the graph convolutional layer to a graph (left) to generate the 
embedding vector of its nodes (right)

You can observe the presence of two quite well-separated communities. This is a nice result, 

considering that we have not trained the network yet!

Spectral graph convolution methods have achieved noteworthy results in many domains. However, 

they present some drawbacks. Consider, for example, a very big graph with billions of nodes: a 

spectral approach requires the graph to be processed simultaneously, which can be impractical 

from a computational point of view.

Furthermore, spectral convolution often assumes a fixed graph, leading to poor  

generalization capabilities on new, unseen samples. To overcome these issues, spatial graph 

convolution represents an interesting alternative.

Spatial graph convolution
Spatial graph convolutional networks perform the operations directly on the graph by aggregating 

information from spatially close neighbors. Spatial convolution has many advantages: weights 

can be easily shared across different locations of the graph, leading to a good generalization  

capability on different graphs. Furthermore, the computation can be done by considering subsets 

of nodes instead of the entire graph, potentially improving computational efficiency.
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GraphSAGE is one of the algorithms that implement spatial convolution. One of its main  

characteristics is its ability to scale over various types of networks. We can think of GraphSAGE 

as composed of three steps:

1.	 Neighborhood sampling: For each node in a graph, the first step is to find its  

k-neighborhood, where k is defined by the user for determining how many hops to 

consider (neighbors of neighbors).

2.	 Aggregation: The second step is to aggregate, for each node, the node features describing 

the respective neighborhood. Various types of aggregation can be performed, including 

average, pooling (for example, taking the best feature according to certain criteria), or an 

even more complicated operation, such as using recurrent units (such as LSTM).

3.	 Prediction: Each node is equipped with a simple neural network that learns how to  

perform predictions based on the aggregated features from the neighbors.

GraphSAGE is often used in supervised learning tasks, as explored in Chapter 5, Supervised 

Graph Learning. However, it is also suitable for unsupervised learning. In unsupervised settings,  

GraphSAGE employs a loss function based on node similarity, which is derived from random 

walks. Specifically, as outlined in the original paper by Hamilton, Ying, and Leskovec (2018), 

fixed-length random walks are used to identify pairs of nodes that are likely to share similar  

representations. The learned embeddings are optimized to ensure that nodes close in these 

random-walk neighborhoods have similar embeddings, using a loss function that measures 

similarity (a dot product, for example) between these embeddings. This approach enables 

GraphSAGE to learn effective node embeddings even without explicit labels.

Graph convolution in practice
In practice, GNNs have been implemented in many machine learning and deep learning  

frameworks, such as StellarGraph, PyG, and DGL. For the next example, we will be using  

StellarGraph. A similar example using other frameworks can be found in the GitHub repository. 

We will learn about embedding vectors in an unsupervised manner, without a target variable. 

The method is inspired by Bai et al., 2019 and is based on the simultaneous embedding of pairs 

of graphs. This embedding should match a ground-truth distance between graphs:

1.	 First, let’s load the required Python modules:

import numpy as np

import stellargraph as sg

from stellargraph.mapper import FullBatchNodeGenerator

from stellargraph.layer import GCN
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import tensorflow as tf

from tensorflow.keras import layers, optimizers, losses, metrics, 
Model

2.	 We will be using the PROTEINS dataset for this example, which is available in StellarGraph 

and consists of 1,114 graphs with 39 nodes and 73 edges on average for each graph. Each 

node is described by four attributes and belongs to one of two classes:

dataset = sg.datasets.PROTEINS()

graphs, graph_labels = dataset.load()

3.	 The next step is to create the model. It will be composed of two GC layers with 64 and 32 

output dimensions followed by ReLU activation, respectively. The output will be computed 

as the Euclidean distance of the two embeddings:

generator = sg.mapper.PaddedGraphGenerator(graphs)

# define a GCN model containing 2 layers of size 64 and 32, 

# respectively.ReLU activation function is used to add 

# non-linearity between layers

gc_model = sg.layer.GCNSupervisedGraphClassification(

[64, 32], ["relu", "relu"], generator, pool_all_layers=True)

# retrieve the input and the output tensor of the GC layer 

# such that they can be connected to the next layer

inp1, out1 = gc_model.in_out_tensors()

inp2, out2 = gc_model.in_out_tensors()

vec_distance = tf.norm(out1 - out2, axis=1)

# create the model. It is also useful to create a specular model in

# order to easily retrieve the embeddings

pair_model = Model(inp1 + inp2, vec_distance)

embedding_model = Model(inp1, out1)

4.	 It is now time to prepare the dataset for training. To each pair of input graphs, we will 

assign a similarity score. Notice that any notion of graph similarity can be used in this 

case, including graph edit distances. For simplicity, we will be using the distance between 

the spectrum of the Laplacian of the graphs:

def graph_distance(graph1, graph2):

   spec1 = nx.laplacian_spectrum(graph1.to_networkx(feature_
attr=None))

   spec2 = nx.laplacian_spectrum(graph2.to_networkx(feature_
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attr=None))

   k = min(len(spec1), len(spec2))

   return np.linalg.norm(spec1[:k] - spec2[:k])

graph_idx = np.random.RandomState(0).randint(len(graphs), size=(100, 
2))

targets = [graph_distance(graphs[left], graphs[right]) for left, 
right in graph_idx]

train_gen = generator.flow(graph_idx, batch_size=10, 
targets=targets)

5.	 Finally, let’s compile and train the model. We will be using the Adaptive Moment  

Estimation (Adam) optimizer with the learning rate parameter set to 1e-2. The loss  

function we will be using is defined as the minimum squared error between the  

prediction and the ground-truth distance computed as previously. The model will be 

trained for 500 epochs:

pair_model.compile(optimizers.Adam(1e-2), loss="mse")

pair_model.fit(train_gen, epochs=500, verbose=0)

After training, we are now ready to inspect and visualize the learned representation. Since the 

output is 32-dimensional, we need a way to qualitatively evaluate the embeddings, for example, 

by plotting them in a bi-dimensional space. We will use T-SNE for this purpose:

# retrieve the embeddings

embeddings = embedding_model.predict(generator.flow(graphs))

# TSNE is used for dimensionality reduction

from sklearn.manifold import TSNE

tsne = TSNE(2)

two_d = tsne.fit_transform(embeddings)

Let’s plot the embeddings. In the plot, each point (embedded graph) is colored according to the 

corresponding label (blue=0, red=1). The results are visible in Figure 4.19:
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Figure 4.19: The PROTEINS dataset embedding using GCNs. Axes represent the first two latent 
directions of the embedding algorithm.

As you can see, the obtained embeddings seem not to be related to the actual label distribution. 

Since this is an unsupervised method, this may happen because the network is learning patterns 

it thinks are useful. However, this is not necessarily a bad thing! By studying these “new” clusters, 

we may discover something new or unexpected in our data.

Moreover, this is just one of the possible methods for learning embeddings for graphs. More 

advanced solutions can be experimented with to better fit the problem of interest.

Summary
In this chapter, we have learned how unsupervised machine learning can be effectively applied to 

graphs to solve real problems, such as node and graph representation learning. In particular, we 

first analyzed shallow embedding methods, a set of algorithms that are able to learn and return 

only the embedding values for the learned input data.

We then learned how autoencoder algorithms can be used to encode the input by preserving 

important information in a lower-dimensional space. We have also seen how this idea can be 

adapted to graphs, by learning about embeddings that allow us to reconstruct the pair-wise 

node/graph similarity. Finally, we introduced the main concepts behind GNNs. We have seen 

how well-known concepts, such as convolution, can be applied to graphs.
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In the next chapter, we will revise these concepts in a supervised setting. There, a target label is 

provided and the objective is to learn a mapping between the input and the output.



5
Supervised Graph Learning

Supervised learning likely represents the majority of practical machine learning (ML) tasks. 

Thanks to more and more active and effective data collection activities, it is very common  

nowadays to deal with labeled datasets.

This is also true for graph data, where labels can be assigned to nodes, communities, or even an 

entire structure. The task, then, is to learn a mapping function between the input and the label 

(also known as a target or an annotation).

For example, given a graph representing a social network, we might be asked to guess which 

user (node) will close their account. Or, similarly, we might be asked to predict the number of 

posts a user will make over the next month. We can learn these predictive functions by training 

graph ML on retrospective data, where each user is labeled as “faithful” or “quitter” based on 

whether they closed their account after a few months. Similarly, users could be associated with 

the number of posts they published in the previous month.

In this chapter, we will explore the concept of supervised graph learning. Therefore, we will 

also be providing an overview of the main supervised graph embedding methods. The following 

topics will be covered:

•	 The supervised graph embedding roadmap

•	 Feature-based methods

•	 Shallow embedding methods

•	 Graph regularization methods

•	 Graph convolutional neural networks (CNNs)
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Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter05. Please refer to the Practical exercises section of 

Chapter 1, Getting Started with Graphs, for guidance on how to set up the environment to run the 

examples in this chapter, using either Poetry, pip or docker.

The supervised graph embedding roadmap
In supervised learning, a training set consists of a sequence of ordered pairs (x, y), where x 

is a set of input features (often signals defined on graphs) and y is the output label assigned 

to it. The goal of ML models, then, is to learn the function mapping each x value to each y  

value. Here, y can be either a categorical or a continuous variable, depending on whether we are  

addressing a classification or a regression problem. Common supervised tasks include predicting user  

properties in a large social network or predicting molecules’ attributes, where each  

molecule is a graph. Sometimes, however, not all instances can be provided with a label. In this  

scenario, a typical dataset consists of a small set of labeled instances and a larger set of unlabeled  

instances. For such situations, semi-supervised learning is proposed, whereby algorithms aim to  

exploit label dependency information reflected by available label information in order to learn the  

predicting function for the unlabeled samples.

With regard to supervised graph ML techniques, many algorithms have been developed, aimed at 

learning an embedding function for graphs while solving a certain supervised task. However as 

previously reported by different scientific papers (https://arxiv.org/abs/2005.03675), they can 

be grouped into macro-groups, depending on how each method encodes the graph information 

to produce the embeddings. These groups are:

•	 Feature-based methods

•	 Shallow embedding methods

•	 Regularization methods

•	 Graph neural networks (GNNs)

They are graphically depicted in the following diagram:

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter05
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter05
https://arxiv.org/abs/2005.03675
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Figure 5.1: Hierarchical structure of the different supervised embedding algorithms described 
in this book

In the following sections, you will learn the main principles behind each group of algorithms. We 

will try to provide insight into the most well-known algorithms in the field as well, as these can 

be used to solve real-world problems.

Feature-based methods
One very simple (yet powerful) method for applying ML on graphs is to consider the encoding 

function as a simple embedding lookup. When dealing with supervised tasks, one simple way of 

doing this is to exploit graph properties. In Chapter 1, Getting Started with Graphs, we learned how 

graphs (or nodes in a graph) can be described by means of structural properties, each “encoding” 

important information from the graph itself.

Let’s forget graph ML for a moment; in classical supervised ML, the task is to find a function that 

maps a set of (descriptive) features of an instance to a particular output. Such features should be 

carefully engineered so that they are sufficiently representative to learn that concept. Therefore, as 

the number of petals and the sepal length might be good descriptors for a flower, when describing 

a graph, we might rely on its average degree, its global efficiency, and its characteristic path length.

This naïve approach acts in two steps, outlined as follows:

1.	 Select a set of good descriptive graph properties.

2.	 Use such properties as input for a traditional ML algorithm.
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Unfortunately, there is no general definition of good descriptive properties, and their choice 

strictly depends on the specific problem to solve. However, you can still compute a wide  

variety of graph properties and then perform feature selection to select the most informative ones.  

Feature selection is a widely studied topic in ML, but providing details about the various  

methods is outside the scope of this book. However, we refer you to the book Machine Learning  

Algorithms – Second Edition (https://subscription.packtpub.com/book/big_data_and_

business_intelligence/9781789347999), published by Packt Publishing, for further reading 

on this subject.

Let’s now see a practical example of how such a basic method can be applied. We will be  

performing a supervised graph classification task by using the PROTEINS dataset. The PROTEINS 

dataset contains several graphs representing protein structures. Each graph is labeled, defining 

whether the protein is an enzyme or not. We will follow these steps:

1.	 First, let’s load the dataset through the stellargraph Python library, as follows:

from stellargraph import datasets

from IPython.display import display, HTML

dataset = datasets.PROTEINS()

graphs, graph_labels = dataset.load()

2.	 For computing graph properties, we will be using networkx, as described in Chapter 1, 

Getting Started with Graphs. To that end, we need to convert graphs from the stellargraph 

format to the networkx format. This can be done in two steps: first, convert the graphs 

from the stellargraph representation to numpy adjacency matrices. Then, use the  

adjacency matrices to retrieve the networkx representation. In addition (as we will see 

in the next steps), we also transform the labels (which are stored as a pandas Series) to 

a numpy array, which can be better exploited by the evaluation functions. The code is 

illustrated in the following snippet:

# convert from StellarGraph format to numpy adj matrices

adjs = [graph.to_adjacency_matrix().A for graph in graphs]

# convert labels from Pandas.Series to numpy array

labels = graph_labels.to_numpy(dtype=int)

3.	 Then, for each graph, we compute global metrics to describe it. For this example, we have 

chosen the number of edges, the average cluster coefficient, and the global efficiency. 

However, we suggest you compute several other properties you may find worth exploring. 

We can extract the graph metrics using networkx, as follows:

https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781789347999
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781789347999
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import numpy as np

import networkx as nx

metrics = []

for adj in adjs:

  # from numpy to networkx

  G = nx.from_numpy_matrix(adj) 

  # basic properties

  num_edges = G.number_of_edges()

  # clustering measures

  cc = nx.average_clustering(G)

  # measure of efficiency

  eff = nx.global_efficiency(G)

  metrics.append([num_edges, cc, eff])

4.	 We can now exploit scikit-learn utilities to create train and test sets. In our experiments, 

we will be using 70% of the dataset as the training set and the remainder as the test set. We 

can do that by using the train_test_split function provided by scikit-learn, as follows:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(metrics, labels, 
test_size=0.3, random_state=42)

5.	 It’s now time to train a proper ML algorithm. We chose a support vector machine (SVM) 

for this task. More precisely, the SVM is trained to minimize the difference between the 

predicted labels and the actual labels (the ground truth). We can do this by using the SVC 

module of scikit-learn. In addition, we use the accuracy, precision, recall, and F1-score 

to evaluate how well the algorithm is performing on the test set:

from sklearn import svm

from sklearn.metrics import accuracy_score, precision_score, recall_
score, f1_score

clf = svm.SVC()

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

print('Accuracy', accuracy_score(y_test,y_pred))

print('Precision', precision_score(y_test,y_pred))

print('Recall', recall_score(y_test,y_pred))

print('F1-score', f1_score(y_test,y_pred))
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This should be the output of the previous snippet of code:

Accuracy 0.7455

Precision 0.7709

Recall 0.8413

F1-score 0.8045

We achieved about 80% for the F1 score, which is already quite good for such a naïve task.  

Moreover, we can observe from the accuracy, precision and recall that performance is quite bal-

anced between classes!

Using graph properties as descriptive features for traditional supervised learning has several 

strengths. It is straightforward to implement, leverages well-established ML techniques, and 

allows for interpretability through human-understandable features like average degree or path 

length. However, it heavily relies on the careful selection and engineering of graph properties, 

which can be time-consuming and domain-specific. Additionally, this approach may struggle at 

capturing complex relationships inherent in graph data.

These limitations pave the way for shallow embedding methods, which automate the process of 

feature extraction by learning representations directly from the graph structure.

Shallow embedding methods
As we already described in Chapter 4, Unsupervised Graph Learning, shallow embedding methods 

are a subset of graph embedding methods that learn node, edge, or graph representations for 

only a finite set of input data. They are transductive methods, since they cannot be applied to 

other instances different from the ones used to train the model. Before starting our discussion, it 

is important to define how supervised and unsupervised shallow embedding algorithms differ.

The main difference between unsupervised and supervised embedding methods essentially 

lies in the task they attempt to solve. Indeed, if unsupervised shallow embedding algorithms 

try to learn a good graph, node, or edge representation in order to understand the underlying  

structure, the supervised algorithms try to find the best solution for a prediction task such as node  

classification, label prediction, or graph classification.

In this section, we will explain in detail some of those supervised shallow embedding algorithms. 

Moreover, we will enrich our description by providing several examples of how to use those 

algorithms in Python. For all the algorithms described in this section, we will present a custom 

implementation using the base classes available in the scikit-learn library.
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Label propagation algorithm
The label propagation algorithm is a well-known semi-supervised algorithm widely applied 

in data science and used to solve the node classification task. More precisely, the algorithm  

propagates the label of a given node to its neighbors or to nodes with a high probability of being 

reached from that node.

The general idea behind this approach is quite simple: given a graph with a set of labeled 

and unlabeled nodes, the labeled nodes propagate their label to the nodes with the highest  

probability of being reached. In the following diagram, we can see an example of a graph with 

labeled and unlabeled nodes:

Figure 5.2: Example of a graph with two labeled nodes (class 0 in red and class 1 in green) 
and six unlabeled nodes

According to Figure 5.2, using the information of the labeled nodes (node 0 and 6), the algorithm 

will calculate the probability of moving to another unlabeled node. The nodes with the highest 

probability from a labeled node will get the label of that node.

Formally, let G = (V, E)  be a graph and let Y = {y1, … , yp} be a set of labels. Since the algorithm 

is semi-supervised, just a subset of nodes will have an assigned label. Moreover, let A ∈  ℝ|V|×|V| 
be the adjacency matrix of the input graph G and D ∈  ℝ|V|×|V| be the diagonal degree matrix 

where each element dij ∈ D is defined as follows:
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dij = { 0 if i ≠ jdeg(vi) if i = j
Where deg⁡(vi)  is the degree of the node 𝑣𝑣𝑖𝑖. In other words, the only nonzero elements of the 

degree matrix are the diagonal elements whose values are given by the degree of the node  

represented by the row. In the following figure, we can see the diagonal degree matrix of the 

graph represented in Figure 5.2:

Figure 5.3: Diagonal degree matrix for the graph in Figure 5.2

From Figure 5.3, it is possible to see how only the diagonal elements of the matrix contain nonzero 

values, and those values represent the degree of the specific node. We also need to introduce the 

transition matrix L = D−1 A. This matrix defines the probability of a node being reached from 

another node. More precisely, lij ∈ L is the probability of reaching node vj from node vi. The 

following figure shows the transition matrix L for the graph depicted in Figure 5.2:

Figure 5.4: Transition matrix for the graph in Figure 5.2

In Figure 5.4, the matrix shows the probability of reaching an end node given a start node. For 

instance, from the first row of the matrix, we can see how from node 0 it is possible to reach, with 

equal probability of 0.5, only nodes 1 and 2. If we defined with Y0 the initial label assignment, the 

probability of label assignment for each node obtained using the L matrix can be computed as Y1 = LY0. The Y1 matrix computed for the graph in Figure 5.2 is shown in the following figure:
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Figure 5.5: Solution obtained using the matrix for the graph in Figure 5.2

From Figure 5.5, we can see that using the transition matrix, node 1 and node 2 have a probability 

of being assigned to the [1 0] label of 0.5 and 0.33, respectively, while node 5 and node 6 have a 

probability of being assigned to the [0 1] label of 0.33 and 0.5, respectively.

Moreover, if we better analyze Figure 5.5, we can see two main problems, as follows:

•	 With this solution, it is possible to assign only to nodes [1 2] and [5 7] a probability  

associated with a label.

•	 The initial labels of nodes 0 and 6 are different from the one defined in Y0.

In order to solve the first point, the algorithm will perform 𝑛𝑛 different iterations; at each iteration 𝑡𝑡, the algorithm will compute the solution for that iteration, as follows:Yt = LYt−1

Where L is the transition matrix and 𝑌𝑌𝑡𝑡𝑡𝑡 is the label assignment at time t-1. The algorithm 

stops its iteration when a certain condition is met, such as when the labels of all nodes remain 

unchanged between iterations, or a maximum number of iterations is reached. The second  

problem is solved by the label propagation algorithm by imposing, in the solution of a given 

iteration 𝑡𝑡, the labeled nodes to have the initial class values. For example, after computing the 

result visible in Figure 5.5, the algorithm will force the first line of the result matrix to be [1 0] and 

the seventh line of the matrix to be [0 1].

Here, we propose a modified version of the LabelPropagation class available in the scikit-learn 

library. The main reason behind this choice is given by the fact that the LabelPropagation class 

takes as input a matrix representing a dataset. Each row of the matrix represents a sample, and 

each column represents a feature.

Before performing a fit operation, the LabelPropagation class internally executes the _build_

graph function. This function builds a graph representation of the input dataset by applying a 

parametric kernel, such as k-nearest neighbors (kNNs) or radial basis functions. 
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The kernel can be specified using the  _get_kernel function. As a result, the original dataset is 

transformed into a graph (in its adjacency matrix representation) where each node is a sample 

(a row of the input dataset) and each edge is an interaction between the samples.

In our specific case, the input dataset is already a graph, so we need to define a new class capable 

of dealing with a networkx graph and performing the computation operation on the original graph. 

The goal is achieved by creating a new class—namely, GraphLabelPropagation—by extending 

the ClassifierMixin, BaseEstimator, and ABCMeta base classes. The algorithm proposed here 

is mainly used in order to help you understand the concept behind the algorithm. The whole  

algorithm is provided in the 05_supervised_graph_machine_learning/02_Shallow_embeddings.

ipynb notebook available in the GitHub repository of this book. In order to describe the algorithm, 

we will use only the fit(X,y) function as a reference. The code is illustrated in the following 

snippet:

class GraphLabelPropagation(ClassifierMixin, BaseEstimator, 
metaclass=ABCMeta):

     def fit(self, X, y):

        X, y = self._validate_data(X, y)

        self.X_ = X

        check_classification_targets(y)

        D = [X.degree(n) for n in X.nodes()]

        D = np.diag(D)

        # label construction

        # construct a categorical distribution for classification only

       unlabeled_index = np.where(y==-1)[0]

       labeled_index = np.where(y!=-1)[0]

       unique_classes = np.unique(y[labeled_index])

       self.classes_ = unique_classes

       Y0 = np.array([self.build_label(y[x], len(unique_classes)) if x in 
labeled_index else np.zeros(len(unique_classes)) for x in range(len(y))])

       A = inv(D)*nx.to_numpy_matrix(G)

       Y_prev = Y0

       it = 0

       c_tool = 10
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       while it < self.max_iter & c_tool > self.tol:

           Y = A*Y_prev

           Y = Y / (Y.sum(axis=1) + 1-e7)  # Normalize

           # force labeled nodes

           Y[labeled_index] = Y0[labeled_index]

           it +=1

           c_tol = np.sum(np.abs(Y-Y_prev))

           Y_prev = Y

       self.label_distributions_ = Y

       return self

The fit(X,y) function takes as input a networkx graph X and an array Y representing the labels 

assigned to each node. Nodes without labels should have a representative value of -1. The while 

loop performs the real computation. More precisely, it computes the Yt value at each iteration and 

forces the labeled nodes in the solution to be equal to their original input value. The algorithm 

performs the computation until the two stop conditions are satisfied. In this implementation, 

the following two criteria have been used:

•	 Number of iterations: The algorithm runs the computation until a given number of  

iterations has been performed.

•	 Solution tolerance error: The algorithm runs the computation until the absolute  

difference of the solution obtained in two consecutive iterations, Yt−1 and Yt, is lower 

than a given threshold value.

The algorithm can be applied to the example graph depicted in Figure 5.2 using the following code:

glp = GraphLabelPropagation()

y = np.array([-1 for x in range(len(G.nodes()))])

y[0] = 0

y[6] = 1

glp.fit(G,y)

glp.predict_proba(G)
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The result obtained by the algorithm is shown in the following diagram:

Figure 5.6: The final labeled graph (left) and the final probability assignment matrix (right) 
generated after applying the label propagation algorithm on the graph shown in Figure 5.2

In Figure 5.6, we can see the results of the algorithm applied to the example shown in Figure 5.2. 

From the final probability assignment matrix, it is possible to see how the probability of the  

initial labeled nodes is 1 due to the constraints of the algorithm and how nodes that are “near” 

to labeled nodes get their label.

Label spreading algorithm
The label spreading algorithm is another semi-supervised shallow embedding algorithm. It was 

built in order to overcome one big limitation of the label propagation method: the initial labeling. 

Indeed, according to the label propagation algorithm, the initial labels cannot be modified in the 

training process and, in each iteration, they are forced to be equal to their original value. This 

constraint could generate incorrect results when the initial labeling is affected by errors or noise. 

As a consequence, the error will be propagated in all nodes of the input graph.

In order to solve this limitation, the label spreading algorithm tries to relax the constraint of the 

original labeled data, allowing the labeled input nodes to change their label during the training 

process.

Formally, let G = (V, E)  be a graph and let Y = {y1,… , yp} be a set of labels (since the algorithm 

is semi-supervised, just a subset of nodes will have an assigned label), and let A ∈  ℝ|V|×|V| and D ∈  ℝ|V|×|V| be the adjacency matrix and diagonal degree matrix of graph G, respectively. Instead 

of computing the probability transition matrix, the label spreading algorithm uses the normalized 

graph Laplacian matrix, defined as follows:ℒ = D−1/2 AD−1/2
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Where A is the adjacency matrix and D is the diagonal matrix. As with label propagation, this  

matrix can be seen as a sort of compact low-dimensional representation of the connections defined 

in the whole graph. This matrix can be easily computed using networkx with the following code:

from scipy.linalg import fractional_matrix_power

D_inv = fractional_matrix_power(D, -0.5)

L = D_inv*nx.to_numpy_matrix(G)*D_inv

As a result, we get the following:

Figure 5.7: The normalized graph Laplacian matrix

The most important difference between the label spreading and label propagation algorithms is 

related to the function used to extract the labels. If we define with Y0 the initial label assignment, 

the probability of a label assignment for each node obtained using the ℒ matrix can be computed 

as follows: Y1 =  αℒY0 + (1 − α)Y0

Where 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼  is the regularization parameter that controls the influence of the graph 

structure versus the initial label assignment. As with label propagation, label spreading has an 

iterative process to compute the end solution. The algorithm will perform n different iterations; 

in each iteration t, the algorithm will compute the solution for that iteration, as follows:Yt =  αℒYt−1 + (1 − α)Y0

The algorithm stops its iteration when a certain condition is met. Common stopping conditions  

include convergence, where the labels no longer change between iterations, or reaching a  

maximum number of iterations specified by the user. It is important to underline the term (1 − α)Y0 of the equation. Indeed, as we said, label spreading does not force the labeled  

element of the solution to be equal to its original value. Instead, the algorithm uses a regularization 

parameter α ϵ [0,1) to weigh the influence of the original solution at each iteration. This allows 

us to explicitly impose the “quality” of the original solution and its influence on the end solution.
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As with the label propagation algorithm, in the following code snippet, we propose a modified 

version of the LabelSpreading class available in the scikit-learn library due to the motivations 

we already mentioned in the previous section. We propose the GraphLabelSpreading class by 

extending our GraphLabelPropagation class, since the only difference will be in the fit() method 

of the class. The whole algorithm is provided in the 05_supervised_graph_machine_learning/02_

Shallow_embeddings.ipynb notebook available in the GitHub repository of this book:

class GraphLabelSpreading(GraphLabelPropagation):

    def fit(self, X, y):

        X, y = self._validate_data(X, y)

        self.X_ = X

        check_classification_targets(y)

        D = [X.degree(n) for n in X.nodes()]

        D = np.diag(D)

        D_inv = np.matrix(fractional_matrix_power(D,-0.5))

        L = D_inv*nx.to_numpy_matrix(G)*D_inv

        # label construction

        # construct a categorical distribution for classification only

        labeled_index = np.where(y!=-1)[0]

        unique_classes = np.unique(y[labeled_index])

        self.classes_ = unique_classes

        Y0 = np.array([self.build_label(y[x], len(unique_classes)) if x in 
labeled_index else np.zeros(len(unique_classes)) for x in range(len(y))])

        Y_prev = Y0

        it = 0

        c_tool = 10

        while it < self.max_iter & c_tool > self.tol:

           Y = (self.alpha*(L*Y_prev))+((1-self.alpha)*Y0)

           it +=1

           Y = Y / (Y.sum(axis=1) + 1e-7)  # Normalize

           c_tol = np.sum(np.abs(Y-Y_prev))

           Y_prev = Y

        self.label_distributions_ = Y

        return self
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Also in this class, the fit() function is the focal point. The function takes as input a networkx graph 

X and an array Y representing the labels assigned to each node. Nodes without labels should have 

a representative value of -1. The while loop computes the Yt value at each iteration, weighting 

the influence of the initial labeling via the parameter 𝛼𝛼. Also, for this algorithm, the number of 

iterations and the difference between two consecutive solutions are used as stop criteria.

The algorithm can be applied to the example graph depicted in Figure 5.2 using the following code:

gls = GraphLabelSpreading()

y = np.array([-1 for x in range(len(G.nodes()))])

y[0] = 0

y[6] = 1

gls.fit(G,y)

gls.predict_proba(G)

In the following diagram, the result obtained by the algorithm is shown:

Figure 5.8: The final labeled graph (left) and the final probability assignment matrix (right) 
generated after applying the label propagation algorithm on the graph shown in Figure 5.2

The result visible in the diagram shown in Figure 5.8 looks similar to the one obtained using the 

label propagation algorithm.

In the next section, we will continue our description of supervised graph embedding methods. 

We will describe how network-based information helps regularize the training and create more 

robust models.
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Graph regularization methods
The shallow embedding methods described in the previous section show how topological  

information and relations between data points can be encoded and leveraged in order to build 

more robust classifiers and address semi-supervised tasks. In general terms, network information 

can be extremely useful in constraining models and enforcing the output to be smooth within  

neighboring nodes. As we have already seen in previous sections, this idea can be efficiently 

used in semi-supervised tasks, when propagating the information on neighbor unlabeled nodes.

On the other hand, this can also be used to regularize the learning phase in order to create more 

robust models that tend to better generalize to unseen examples. Both the label propagation and 

the label spreading algorithms we have seen previously can be implemented as a cost function 

to be minimized when we add an additional regularization term. Generally, in supervised tasks, 

we can write the cost function ℒ(x)  to be minimized in the following form:ℒ(x) = ∑ ℒs(yiiϵS , f(xi))  + ∑ ℒg(i,jϵS,U f(xi), f(xj), G)

Let’s break down the equation. We have two terms in the sum: the first term focuses on fitting 

the model to the labeled data, while the second term ensures that the model takes advantage of 

the graph structure to regularize predictions. Let’s look at this in more detail.ℒs(yi, f(xi))  is the supervised loss term. It measures how well the predicted label f(xi)  matches 

the true label yi for each labeled sample 𝑖𝑖 𝑖 𝑖𝑖. Its exact form depends on the problem; it can be 

a common loss function like mean squared error (MSE) (for regression tasks) or cross-entropy 

loss (for classification tasks).ℒg(f(xi), f(x𝑗𝑗), G) is the graph-based regularization term. It uses the graph structure G to enforce 

consistency in predictions. Specifically, it ensures that connected nodes x𝑖𝑖 and x𝑗𝑗 in the graph 

have similar predicted labels 𝑓𝑓𝑓𝑓𝑖𝑖)  and 𝑓𝑓𝑓𝑓𝑗𝑗) for each labeled sample 𝑖𝑖 𝑖 𝑖𝑖 and unlabeled sample 𝑗𝑗 𝑗 𝑗𝑗. This term depends on the graph topology and the relationship between node features.

In this section, we will further describe such an idea and see how this can be very powerful,  

especially when regularizing the training of neural networks, which—as you might know— 

naturally tend to overfit and/or need large amounts of data to be trained efficiently.
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Manifold regularization and semi-supervised embedding
Manifold regularization (Belkin et al., 2006) extends the label propagation framework by 

parametrizing the model function in the reproducing kernel Hilbert space (RKHS) and using 

as a supervised loss function (first term in the previous equation) the MSE or the hinge loss. In 

other words, when training an SVM or a least squares fit manifold regularization applies, a graph 

regularization term based on the Laplacian matrix L, as follows:∑ Wij||f(xi) − f(xj)||22i,j∈S,U =  fL̅f̅
Here, Wij represents the weight of the edge between nodes i and j, while f(xi) and f(xj)  are 

the predicted labels. The equation enforces smoothness in the learned prediction function by  

penalizing differences in function values between connected nodes. Essentially, the term  

ensures that neighboring nodes in the graph have similar representations, reinforcing the manifold  

assumption that similar data points lie close to each other in the feature space.

For this reason, these methods are generally labeled as Laplacian regularization, and such a 

formulation leads to Laplacian regularized least squares (LapRLS) and LapSVM classifications. 

Label propagation and label spreading can be seen as a special case of manifold regularization. 

Besides, these algorithms can also be used in the case of no-labeled data (first term in the equation 

disappearing) reducing to Laplacian eigenmaps.

On the other hand, they can also be used in the case of a fully labeled dataset, in which case 

the preceding terms constrain the training phase to regularize the training and achieve more  

robust models. Moreover, being the classifier parametrized in the RKHS, the model can be used on  

unobserved samples and does not require test samples to belong to the input graph. In this sense, 

it is therefore an inductive model.

Manifold learning still represents a form of shallow learning, whereby the parametrized function 

does not leverage on any form of intermediate embeddings. Semi-supervised embedding (Weston 

et al., 2012) extends the concepts of graph regularization to deeper architectures by imposing the 

constraint and the smoothness of the function on intermediate layers of a neural network. Let’s 

define 𝑔𝑔ℎ𝑘𝑘 as the intermediate output of the kth hidden layer. The regularization term proposed 

in the semi-supervised embedding framework reads as follows:ℒ𝐺𝐺ℎ𝑘𝑘 = ∑ ℒ(Wiji,jϵS,U , 𝑔𝑔ℎ𝑘𝑘(𝑥𝑥𝑖𝑖), 𝑔𝑔ℎ𝑘𝑘(𝑥𝑥𝑗𝑗))
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Here, the function enforces similarity between representations of connected nodes i and j at a 

specific layer ℎ𝑘𝑘. This encourages smoothness in the learned embeddings, ensuring that the 

network learns meaningful representations that align with the graph structure.

Depending on where the regularization is imposed, three different configurations (shown in 

Figure 5.9) can be achieved, as follows:

•	 Regularization is applied to the final output of the network. This corresponds to a  

generalization of the manifold learning technique to multilayer neural networks.

•	 Regularization is applied to an intermediate layer of the network, thus regularizing the 

embedding representation.

•	 Regularization is applied to an auxiliary network that shares the first k-1 layers. This  

basically corresponds to training an unsupervised embedding network while  

simultaneously training a supervised network. This technique basically imposes a derived  

regularization on the first k-1 layers that are constrained by the unsupervised network as 

well and simultaneously promotes an embedding of the network nodes.

The following diagram shows an illustration of the three different configurations—with their 

similarities and differences—that can be achieved using a semi-supervised embedding framework:

Figure 5.9: Semi-supervised embedding regularization configurations: graph regularization, 
indicated by the cross, can be applied to the output (left), to an intermediate layer (center), 

or to an auxiliary network (right)

In its original formulation, the loss function used for the embeddings is the one derived from the 

Siamese network formulation, as follows:

ℒ(𝑊𝑊𝑖𝑖𝑖𝑖, 𝑔𝑔ℎ𝑘𝑘(𝑖𝑖), 𝑔𝑔ℎ𝑘𝑘(𝑗𝑗)) = { ||𝑔𝑔ℎ𝑘𝑘(𝑖𝑖) − 𝑔𝑔ℎ𝑘𝑘(𝑗𝑗)||2 𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖 = 1max(0, 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚 ℎ𝑘𝑘(𝑖𝑖) − 𝑔𝑔ℎ𝑘𝑘(𝑗𝑗)||2) 𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖 = 0



Chapter 5 167

As can be seen by this equation, the loss function ensures the embeddings of neighboring nodes 

stay close. On the other hand, non-neighbors are instead pulled apart to a distance (at least) 

specified by the threshold m. As compared to the regularization based on the Laplacian fL̅f̅  
(although for neighboring points, the penalization factor is effectively recovered), the one shown 

here is generally easier to optimize with gradient descent.

The best choice among the three configurations presented in Figure 5.9 is largely influenced 

by the data at your disposal as well as on your specific use case—that is, whether you need a  

regularized model output or to learn a high-level data representation. However, you should always 

keep in mind that when using softmax layers (usually done at the output layer), the regularization 

based on the hinge loss may not be very appropriate or suited for log probabilities. In such cases, 

regularized embeddings and relative loss should instead be introduced at intermediate layers. 

However, be aware that embeddings that reside in deeper layers are generally harder to train and 

require careful tuning of the learning rate and margins to be used. In the next section, we will 

learn about a generalization of manifold learning. While we have not yet discussed a practical 

example of manifold learning, we will cover it as part of this generalization.

Neural graph learning
Neural graph learning (NGL) basically generalizes the previous formulations and, as we will 

see, makes it possible to seamlessly apply graph regularization to any form of a neural network, 

including CNNs and recurrent neural networks (RNNs). In particular, there exists an extremely 

powerful framework named neural structured learning (NSL) that allows us to extend in a very 

few lines of code a neural network implemented in TensorFlow with graph regularization. The 

networks can be of any kind: natural or synthetic.

When synthetic, graphs can be generated in several ways. For instance, one approach involves 

constructing embeddings of raw input features (e.g., using feature vectors from images, text, or 

tabular data) in an unsupervised manner, then using a similarity or distance metric to define edges 

between nodes. You can also generate synthetic graphs using adversarial examples. Adversarial 

examples are artificially generated samples obtained by perturbing actual (real) examples in 

such a way that we confound the network, trying to force a prediction error. These very carefully 

designed samples (obtained by perturbing a given sample in the gradient-descent direction in 

order to maximize errors) can be connected to their related samples, thus generating a graph. 

These connections can then be used to train a graph-regularized version of the network, allowing 

us to obtain models that are more robust against adversarially generated examples.
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NGL extends the regularization by augmenting the tuning parameters for graph regularization 

in neural networks, decomposing the contribution of labeled-labeled, labeled-unlabeled, and 

unlabeled-unlabeled relations using three parameters, α1, α2, and α3, respectively, as follows:L = Ls + α1  ∑ Wiji,jϵLL d (ghk(i) , ghk(j)) +  α2 ∑ Wiji,jϵLU d (ghk(i) , ghk(j))  + α3 ∑ Wiji,jϵUU d (ghk(i) , ghk(j))

The function d represents a generic distance between two vectors—for instance, the L2 norm ||. ||2. By varying the coefficients and the definition of ghk. , we can arrive at the different  

algorithms seen previously as limiting behavior, as follows:

•	 When α1 ≠ 0 ∀i, we retrieve the non-regularized version of a neural network.

•	 When only α1 ≠ 0 , we recover a fully supervised formulation where relationships between 

nodes act to regularize the training.

•	 When we substitute ghk.  (which is parametrized by a set of alpha coefficients) with a set 

of values Yi∗ (to be learned) that map each sample to its instance class, we recover the 

label propagation formulation.

Loosely speaking, the NGL formulations can be seen as non-linear versions of the label  

propagation and label spreading algorithms, or as a form of a graph-regularized neural network 

for which the manifold learning or semi-supervising embedding can be obtained.

We will now apply NGL to a practical example, where you will learn how to use graph  

regularization in neural networks. To do so, we will use the NLS framework (https://github.

com/tensorflow/neural-structured-learning), which is a library built on top of TensorFlow 

that makes it possible to implement graph regularization with only a few lines of codes on top 

of standard neural networks.

For our example, we will be using the Cora dataset, which is a labeled dataset that consists of 

2,708 scientific papers in computer science that have been classified into seven classes. Each 

paper represents a node that is connected to other nodes based on citations. In total, there are 

5,429 links in the network.

Moreover, each node is further described by a 1,433-long vector of binary values (0 or 1) that 

represent a dichotomic bag-of-words (BOW) representation of the paper: a one-hot-encoding 

algorithm indicating the presence/absence of a word in a given vocabulary made up of 1,433 terms.

The Cora dataset can be downloaded directly from the stellargraph library with a few lines of 

code, as follows:

https://github.com/tensorflow/neural-structured-learning
https://github.com/tensorflow/neural-structured-learning
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from stellargraph import datasets

dataset = datasets.Cora()

dataset.download()

G, labels = dataset.load()

This returns two outputs, outlined as follows:

•	 G, which is the citation network containing the network nodes, edges, and the features 

describing the BOW representation.

•	 labels, which is a pandas Series that maps each paper ID (node) to one of the following 

classes:

['Neural_Networks', 'Rule_Learning', 'Reinforcement_Learning',

'Probabilistic_Methods', 'Theory', 'Genetic_Algorithms', 'Case_
Based']

Starting from this information, we will create a training set and a validation set. In the training 

samples, we will include information relating to neighbors (which may or may not belong to the 

training set and therefore have a label), and this will be used to regularize the training.

Validation samples, on the other hand, will not have neighbor information and the predicted 

label will only depend on the node features—namely, the BOW representation. Therefore, we 

will leverage both labeled and unlabeled samples (semi-supervised task) in order to produce an 

inductive model that can also be used against unobserved samples.

1.	 As a preparatory step, we conveniently structure the node features as a DataFrame, whereas 

we store the graph as an adjacency matrix, as follows:

adjMatrix = pd.DataFrame.sparse.from_spmatrix(

        G.to_adjacency_matrix(),

        index=G.nodes(), columns=G.nodes()

)

features = pd.DataFrame(G.node_features(), index=G.nodes())

Using adjMatrix, we implement a helper function that is able to retrieve the closest topn 

neighbors of a node, returning the node ID and the edge weight, as illustrated in the 

following code snippet:

def getNeighbors(idx, adjMatrix, topn=5):

    weights = adjMatrix.loc[idx]

    neighbors = weights[weights>0]\
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         .sort_values(ascending=False)\

         .head(topn)

    return [(k, v) for k, v in neighbors.iteritems()]

Using the preceding information together with the helper function, we can merge the 

information into a single DataFrame, as follows:

dataset = {

    index: {

        "id": index,

        "words": [float(x)

                  for x in features.loc[index].values],

        "label": label_index[label],

        "neighbors": getNeighbors(index, adjMatrix, topn)

    }

    for index, label in labels.items()

}

df = pd.DataFrame.from_dict(dataset, orient="index")

This DataFrame represents the node-centric feature space. This would suffice if we 

were to use a regular classifier that does not exploit the information of the  

relationships between nodes. However, in order to allow the computation of the graph 

regularization term, we need to join the preceding DataFrame with information  

relating to the neighborhood of each node. We then define a function able to retrieve 

and join the neighborhood information, as follows:

def getFeatureOrDefault(ith, row):

    try:

        nodeId, value = row["neighbors"][ith]

        return {

            f"{GRAPH_PREFIX}_{ith}_weight": value,

            f"{GRAPH_PREFIX}_{ith}_words": df.loc[nodeId]["words"]

        }

     except:

        return {

            f"{GRAPH_PREFIX}_{ith}_weight": 0.0,

            f"{GRAPH_PREFIX}_{ith}_words": [float(x) for x in 
np.zeros(1433)]

        }
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def neighborsFeatures(row):

    featureList = [getFeatureOrDefault(ith, row) for ith in 
range(topn)]

    return pd.Series(

        {k: v

         for feat in featureList for k, v in feat.items()}

    )

As shown in the preceding code snippet, when the neighbors are less than topn, we set 

the weight and the one-hot encoding of the words to 0. The GRAPH_PREFIX constant is a 

prefix that is to be prepended to all features that will later be used by the nsl library to 

regularize the training. Although it can be changed, in the following code snippet we will 

keep its value equal to the default value: "NL_nbr".

This function can be applied to the DataFrame in order to compute the full feature space, 

as follows:

neighbors = df.apply(neighborsFeatures, axis=1)

allFeatures = pd.concat([df, neighbors], axis=1)

We now have in allFeatures all the ingredients we need to implement our graph- 

regularized model.

2.	 We can now start the training process by splitting our dataset into a training set and a 

validation set, as follows:

n = int(np.round(len(labels)*ratio))

labelled, unlabelled = model_selection.train_test_split(

    allFeatures, train_size=n, test_size=None, stratify=labels

)

Here, ratio is the proportion of the dataset that will be labeled. As the ratio decreases, we 

expect the performance of standard, non-regularized classifiers to reduce. However, such a 

reduction can be compensated by leveraging network information provided by unlabeled 

data. We thus expect graph-regularized neural networks to provide better performance 

thanks to the augmented information they leverage. For the following code snippet, we 

will assume a ratio value equal to 0.2.

Before feeding this data into our neural network, we convert the DataFrame into a  

TensorFlow tensor and dataset, which is a convenient representation that will allow the 

model to refer to feature names in its input layers.
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Since the input features have different data types, it is best to handle the dataset creation 

separately for the weights, words, and labels values, as follows:

train_base = {

    "words": tf.constant([

         tuple(x) for x in labelled["words"].values

    ]),

    "label": tf.constant([

         x for x in labelled["label"].values

    ])

}

train_neighbor_words = {

    k: tf.constant([tuple(x) for x in labelled[k].values])

    for k in neighbors if "words" in k

}

train_neighbor_weights = {

    k: tf.constant([tuple([x]) for x in labelled[k].values])

    for k in neighbors if "weight" in k

}

Now that we have the tensor, we can merge all this information into a TensorFlow dataset, 

as follows:

trainSet = tf.data.Dataset.from_tensor_slices({

    k: v

    for feature in [train_base, train_neighbor_words,

                    train_neighbor_weights]

    for k, v in feature.items()

})

We can similarly create a validation set. As mentioned previously, since we want to  

design an inductive algorithm, the validation dataset does not need any neighborhood  

information. The code is illustrated in the following snippet:

validSet = tf.data.Dataset.from_tensor_slices({

    "words": tf.constant([

       tuple(x) for x in unlabelled["words"].values

    ]),

    "label": tf.constant([

       x for x in unlabelled["label"].values
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    ])

})

Before feeding the dataset into the model, we split the features from the labels, as follows:

def split(features):

    labels=features.pop("label")

    return features, labels

trainSet = trainSet.map(f)

validSet = validSet.map(f)

That’s it! We have generated the inputs to our model. We could also inspect one  

sample batch of our dataset by printing the values of features and labels, as shown in the  

following code block:

for features, labels in trainSet.batch(2).take(1):

    print(features)

    print(labels)

3.	 It is now time to create our first model. To do this, we start from a simple architecture 

that takes as input the one-hot representation and has two hidden layers, composed of 

a Dense layer plus a Dropout layer with 50 units each, as follows:

inputs = tf.keras.Input(

    shape=(vocabularySize,), dtype='float32', name='words'

)

cur_layer = inputs

for num_units in [50, 50]:

    cur_layer = tf.keras.layers.Dense(

        num_units, activation='relu'

    )(cur_layer)

    cur_layer = tf.keras.layers.Dropout(0.8)(cur_layer)

outputs = tf.keras.layers.Dense(

    len(label_index), activation='softmax',

    name="label"

)(cur_layer)

model = tf.keras.Model(inputs, outputs=outputs)
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Indeed, we could also train this model without graph regularization by simply compiling 

the model to create a computational graph, as follows:

model.compile(

    optimizer='adam',

    loss='sparse_categorical_crossentropy',

    metrics=['accuracy']

)

And then, we could run it as usual, also allowing the history file to be written to disk in 

order to be monitored using TensorBoard, as illustrated in the following code snippet:

from tensorflow.keras.callbacks import TensorBoard

model.fit(

    trainSet.batch(128), epochs=200, verbose=1,

    validation_data=validSet.batch(128),

    callbacks=[TensorBoard(log_dir='/tmp/base')]

)

At the end of the process, we should have something similar to the following output:

Epoch 200/200

loss: 0.7798 – accuracy: 06795 – val_loss: 1.5948 – val_accuracy: 
0.5873

4.	 With a top performance around 0.6 in accuracy, we now need to create a graph-regularized 

version of the preceding model. For this step, it is important to recreate our model from 

scratch, especially when comparing the results: if we were to use layers already initialized 

and used in the previous model, the layer weights would not be random but would be 

used with the ones already optimized in the preceding run.

Once a new model has been created, adding a graph regularization technique to be used 

at training time can be done in just a few lines of code, as follows:

import neural_structured_learning as nsl

graph_reg_config = nsl.configs.make_graph_reg_config(

    max_neighbors=2,

    multiplier=0.1,

    distance_type=nsl.configs.DistanceType.L2,

    sum_over_axis=-1)

graph_reg= nsl.keras.GraphRegularization(

     model, graph_reg_config)
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Let’s analyze the different hyperparameters of the regularization, as follows:

•	 max_neighbors tunes the number of neighbors that ought to be used for computing 

the regularization loss for each node.

•	 multiplier corresponds to the coefficients that tune the importance of the  

regularization loss. Since we only consider labeled-labeled and labeled-unlabeled, 

this effectively corresponds to α1 and α2.

•	 distance_type represents the pairwise distance d to be used.

•	 sum_over_axis sets whether the weighted average sum should be calculated with 

respect to features (when set to None) or to samples (when set to -1).

The graph-regularized model can be compiled and run in the same way as before with 

the following commands:

graph_reg.compile(

    optimizer='adam',

    loss='sparse_categorical_crossentropy',

    metrics=['accuracy']

)

model.fit(

    trainSet.batch(128), epochs=200, verbose=1,

    validation_data=validSet.batch(128),

    callbacks=[TensorBoard(log_dir='/tmp/nsl')]

)

Note that the loss function now also accounts for the graph regularization term, as defined 

previously. Therefore, we now also introduce information coming from neighboring nodes 

that regularizes the training of our neural network. The preceding code, after about 200 

iterations, provides the following output:

Epoch 200/200

loss: 0.9136 – accuracy: 06405 – scaled_graph_loss: 0.0328 - val_
loss: 1.2526 – val_accuracy: 0.6320

As you can see, graph regularization, when compared to the vanilla version, has allowed us 

to boost the performance in terms of validation accuracy by about 7%. Not bad at all! This is  

because the model is now able to exploit relational information between data points. While the 

non-regularized version relies just on individual feature representations, the graph-regularized 

version now incorporates neighborhood information, which can reduce overfitting and improve 

generalization, particularly in cases where the data contains inherent structure or relationships.
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In the right panel of the following screenshot, we show the dependence of the performance 

measured by the accuracy as the supervised ratio increases. As expected, performance increases 

as the ratio increases. On the left panel, we show the accuracy increments on the validation set 

for various configurations of neighbors and supervised ratio, defined by:∆a = accuracyreg − accuracyno reg

As can be seen in Figure 5.10, almost all graph-regularized versions outperform the vanilla models:

Figure 5.10: Accuracy on the validation set for the graph-regularized neural networks with 
neighbors = 2 and various supervised ratios (left); accuracy increments on the validation set 

for the graph-regularized neural networks compared to the vanilla version (right)

The only exceptions are configuration neighbors = 2 and ratio = 0.5, for which the two models 

perform very similarly. However, the curve has a clear positive trend and we reasonably expect 

the graph-regularized version to outperform the vanilla model for a larger number of epochs.

You can perform several experiments, changing the ratio of labeled/unlabeled  

samples, the number of neighbors to be used, the regularization coefficient, the 

distance, and more. We encourage you to play around with the notebook that is 

provided with this book to explore the effect of different parameters yourself.
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Planetoid
The methods discussed so far provide graph regularization that is based on the Laplacian matrix. 

As we have seen in previous chapters, enforcing constraints based on Wij ensures that first-order 

proximity is preserved. Yang et al. (2016) proposed a method to extend graph regularization in 

order to also account for higher-order proximities. Their approach, which they named Planetoid 

(short for Predicting Labels And Neighbors with Embeddings Transductively Or Inductively 

from Data), extends skip-gram methods used for computing node embeddings to incorporate 

node-label information.

As we have seen in the previous chapter, skip-gram methods are based on generating random 

walks through a graph and then using the generated sequences to learn embeddings via a  

skip-gram model. The following diagram shows how the unsupervised version is modified to 

account for the supervised loss:

Figure 5.11: Sketch of the Planetoid architecture: the dotted line represents a parametrized 
function that allows the method to extend from transductive to inductive

In the notebook, we also use another interesting feature of TensorFlow for  

creating the datasets. Instead of using a pandas DataFrame, as we did previously, 

we will create a dataset using the TensorFlow Example, Features, and Feature  

classes, which, besides providing a high-level description of samples, also allow us to  

serialize the input data (using protobuf) to make them compatible across platforms 

and programming languages.

If you are interested in further using TensorFlow both for prototyping models and 

deploying them into production via data-driven applications (maybe written in other 

languages), we strongly advise you to dig further into these concepts.
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As shown in Figure 5.11, embeddings are fed to both of the following:

•	 A softmax layer to predict the graph context of the sampled random-walk sequences

•	 A set of hidden layers that combine with the hidden layers derived from the node features 

in order to predict the class labels

The cost function to be minimized to train the combined network is composed of a supervised 

and an unsupervised loss — ℒs and ℒu, respectively. The unsupervised loss is analogous to the 

one used with skip-gram with negative sampling, whereas the supervised loss minimizes the 

conditional probability of predicting the label 𝑦𝑦 and can be written as follows:ℒ𝑠𝑠 =  − ∑ log 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑒𝑒𝑖𝑖)𝑖𝑖𝑖𝑖𝑖 

Where S is the set of labeled points and 𝑥𝑥𝑖𝑖 and 𝑒𝑒𝑖𝑖 are the input feature and the learned  

embeddings for the ith data point, respectively. The goal, then, is to minimize the loss by  

encouraging the model to make predictions that are closely aligned with the ground truth. The 

preceding formulation is transductive as it requires samples to belong to the graph in order to 

be applied. In a semi-supervised task, this method can be efficiently used to predict labels for 

unlabeled examples. However, it cannot be used for unobserved samples. As shown by the 

dotted line in Figure 5.11, an inductive version of the Planetoid algorithm can be obtained by 

parametrizing the embeddings as a function of the node features, via dedicated connected 

layers.

As you can see, Planetoid represents a simple extension of the example in the previous section. 

Therefore, we will not implement it here in the book. Nevertheless, you can find a possible  

implementation in our GitHub repository.

All the techniques described so far remain valuable for their simplicity,  

interpretability, and efficiency. Nevertheless, nowadays, with the rise of neural  

network-based techniques, it is common to solve such problems using modern  

techniques such as GNNs. It is important to remark, however, that simpler  

methods can often achieve comparable results in specific scenarios, offering 

computational advantages and complementing modern techniques. Highlighting 

these foundational methods underscores their relevance and prevents them from 

being overshadowed by the drive for innovation.
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Graph CNNs
In Chapter 4, Unsupervised Graph Learning, we learned the main concepts behind GNNs and 

graph convolutional networks (GCNs). We also learned the difference between spectral graph  

convolution and spatial graph convolution. More precisely, we saw that GCN layers can be 

used to encode graphs or nodes under unsupervised settings by learning how to preserve graph  

properties such as node similarity.

In this chapter, we will explore such methods under supervised settings. This time, our goal is to 

learn graphs or node representations that can accurately predict node or graph labels. It is indeed 

worth noting that the encoding function remains the same. What will change is the objective!

Graph classification using GCNs
Let’s consider again our PROTEINS dataset. Let’s load the dataset as follows:

import pandas as pd

from stellargraph import datasets

dataset = datasets.PROTEINS()

graphs, graph_labels = dataset.load()

# necessary for converting default string labels to int

labels = pd.get_dummies(graph_labels, drop_first=True)

In the following example, we are going to use (and compare) one of the most widely used GCN 

algorithms for graph classification—GCN by Kipf and Welling:

1.	 stellargraph, which we are using to build the model, uses tf.Keras as the  

backend. According to its specific criteria, we need a data generator to feed the mod-

el. More precisely, since we are addressing a supervised graph classification problem, 

we can use an instance of the PaddedGraphGenerator class of stellargraph, which 

automatically resolves differences in the number of nodes by using padding. Here is the 

code required for this step:

from stellargraph.mapper import PaddedGraphGenerator

generator = PaddedGraphGenerator(graphs=graphs)

2.	 We are now ready to actually create our first model. We will create and stack together four 

GCN layers through the utility function of stellargraph, as follows:

from stellargraph.layer import DeepGraphCNN

from tensorflow.keras import Model
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from tensorflow.keras.optimizers import Adam

from tensorflow.keras.layers import Dense, Conv1D, MaxPool1D, 
Dropout, Flatten

from tensorflow.keras.losses import binary_crossentropy

import tensorflow as tf

nrows = 35  # the number of rows for the output tensor

layer_dims = [32, 32, 32, 1]

# backbone part of the model (Encoder)

dgcnn_model = DeepGraphCNN(

    layer_sizes=layer_dims,

    activations=["tanh", "tanh", "tanh", "tanh"],

    k=nrows,

    bias=False,

    generator=generator,

)

3.	 This backbone will be concatenated to one-dimensional (1D) convolutional layers and 

fully connected layers using tf.Keras, as follows:

# necessary for connecting the backbone to the head

gnn_inp, gnn_out = dgcnn_model.in_out_tensors()

# head part of the model (classification)

x_out = Conv1D(filters=16, kernel_size=sum(layer_dims), 
strides=sum(layer_dims))(gnn_out)

x_out = MaxPool1D(pool_size=2)(x_out)

x_out = Conv1D(filters=32, kernel_size=5, strides=1)(x_out)

x_out = Flatten()(x_out)

x_out = Dense(units=128, activation="relu")(x_out)

x_out = Dropout(rate=0.5)(x_out)

predictions = Dense(units=1, activation="sigmoid")(x_out)

4.	 Let’s create and compile a model using tf.Keras utilities. We will train the model with a 

binary_crossentropy loss function (to measure the difference between predicted labels 

and ground truth) with the Adam optimizer and a learning rate of 0.0001. We will also 

monitor the accuracy metric while training. The code is illustrated in the following snippet:

model = Model(inputs=gnn_inp, outputs=predictions)

model.compile(optimizer=Adam(lr=0.0001), loss=binary_crossentropy, 
metrics=["acc"])
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5.	 We can now exploit scikit-learn utilities to create train and test sets. In our experiments, 

we will be using 70% of the dataset as a training set and the remainder as a test set. In 

addition, we need to use the flow method of the generator to supply them to the model. 

The code to achieve this is shown in the following snippet:

from sklearn.model_selection import train_test_split

train_graphs, test_graphs = train_test_split(

graph_labels, test_size=.3, stratify=labels,)

gen = PaddedGraphGenerator(graphs=graphs)

train_gen = gen.flow(

    list(train_graphs.index - 1),

    targets=train_graphs.values,

    symmetric_normalization=False,

    batch_size=50,

)

test_gen = gen.flow(

    list(test_graphs.index - 1),

    targets=test_graphs.values,

    symmetric_normalization=False,

    batch_size=1,

)

6.	 It’s now time for training. We train the model for 100 epochs. However, feel free to play 

with the hyperparameters to gain better performance. Here is the code for this:

epochs = 100

history = model.fit(train_gen, epochs=epochs, verbose=1,

validation_data=test_gen, shuffle=True,)

After 100 epochs, this should be the output:

Epoch 100/100

loss: 0.5121 – acc: 0.7636 – val_loss: 0.5636 – val_acc: 0.7305

Here, we are achieving about 76% accuracy on the training set and about 73% accuracy on the 

test set. These results indicate that the model has learned meaningful patterns from the graph 

structure and node features, which it is exploiting effectively to generalize reasonably well.
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Node classification using GraphSAGE
In the next example, we will train GraphSAGE to classify nodes of the Cora dataset.

Let’s first load the dataset using stellargraph utilities, as follows:

dataset = datasets.Cora()

G, nodes = dataset.load()

Follow this list of steps to train GraphSAGE to classify nodes of the Cora dataset:

1.	 As in the previous example, the first step is to split the dataset. We will be using 90% of 

the dataset as a training set and the remainder for testing. Here is the code for this step:

train_nodes, test_nodes = train_test_split(nodes, train_
size=0.1,test_size=None, stratify=nodes)

2.	 This time, we will convert labels using one-hot representation. This representation is 

often used for classification tasks and usually leads to better performance. Specifically, 

let c be the number of possible targets (seven, in the case of the Cora dataset), and each 

label will be converted to a vector of size c, where all the elements are 0 except for the 

one corresponding to the target class. The code is illustrated in the following snippet:

from sklearn import preprocessing

label_encoding = preprocessing.LabelBinarizer()

train_labels = label_encoding.fit_transform(train_nodes)

test_labels = label_encoding.transform(test_nodes)

3.	 Let’s create a generator to feed the data into the model. We will be using an instance of 

the GraphSAGENodeGenerator class of stellargraph. We will use the flow method to feed 

the model with the train and test sets, as follows:

from stellargraph.mapper import GraphSAGENodeGenerator

batchsize = 50

n_samples = [10, 5, 7]

generator = GraphSAGENodeGenerator(G, batchsize, n_samples)

train_gen = generator.flow(train_nodes.index, train_labels, 
shuffle=True)

test_gen = generator.flow(test_labels.index, test_labels)
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4.	 Finally, let’s create the model and compile it. For this exercise, we will be using a GraphSAGE 

encoder with three layers of 32, 32, and 16 dimensions, respectively. The encoder will then 

be connected to a dense layer with softmax activation to perform the classification. We 

will use an Adam optimizer with a learning rate of 0.03 and categorical_crossentropy 

as the loss function. The code is illustrated in the following snippet:

from stellargraph.layer import GraphSAGE

from tensorflow.keras.losses import categorical_crossentropy

graphsage_model = GraphSAGE(layer_sizes=[32, 32, 16], 
generator=generator, bias=True, dropout=0.6,)

gnn_inp, gnn_out = graphsage_model.in_out_tensors()

outputs = Dense(units=train_labels.shape[1], activation="softmax")
(gnn_out)

# create the model and compile

model = Model(inputs=gnn_inp, outputs=outputs)

model.compile(optimizer=Adam(lr=0.003), loss=categorical_
crossentropy, metrics=["acc"],)

5.	 It’s now time to train the model. We will train the model for 20 epochs, as follows:

model.fit(train_gen, epochs=20, validation_data=test_gen, verbose=2, 
shuffle=False)

6.	 This should be the output:

Epoch 20/20

loss: 0.8252 – acc: 0.8889 – val_loss: 0.9070 – val_acc: 0.8011

We achieved about 89% accuracy over the training set and about 80% accuracy over the test set, 

indicating that GraphSAGE has strong capability to learn meaningful information from the graph 

while avoiding excessive overfitting.

Summary
In this chapter, we have learned how supervised ML can be effectively applied on graphs to solve 

real problems such as node and graph classification. In particular, we first analyzed how graph 

and node properties can be directly used as features to train classic ML algorithms. We have seen 

shallow methods and simple approaches to learning node, edge, or graph representations for only 

a finite set of input data. We then learned how regularization techniques can be used during the 

learning phase in order to create more robust models that tend to generalize better. Finally, we 

have seen how GNNs can be applied to solve supervised ML problems on graphs.
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But what can these algorithms be useful for? In the next chapter, we will explore common  

problems that can be solved using graph-based ML techniques.



6
Solving Common Graph-Based 
Machine Learning Problems 

Graph machine learning (ML) approaches can be useful for a wide range of tasks, with  

applications ranging from drug design to recommender systems in social networks. Furthermore, 

given the fact that such methods are general by design (meaning that they are not tailored to a 

specific problem), the same algorithm can be used to solve different problems.

There are common problems that can be effectively solved using graph-based learning techniques, 

as they excel at capturing relationships and structures in data. In this chapter, we will mention 

some of the most well studied of these by providing details about how a specific algorithm, among 

the ones we have already learned about in Chapters 4, Unsupervised Graph Learning, and Chapters 

5, Supervised Graph Learning, can be used to solve a task. After reading this chapter, you will be 

aware of the formal definition of many common problems you may encounter when dealing 

with graphs. In addition, you will learn about useful ML pipelines that you can reuse on future 

real-world problems you will deal with.

More precisely, the following topics will be covered in this chapter:

•	 Predicting missing links in a graph

•	 Detecting meaningful structures such as communities

•	 Detecting graph similarities and graph matching
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Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter06. Please refer to the Practical exercises section of 

Chapters 1, Getting Started with Graphs, for guidance on how to set up the environment to run the 

examples in this chapter, either using Poetry, pip, or docker.

Predicting missing links in a graph
Link prediction, also known as graph completion, is a common problem when dealing with 

graphs. More precisely, from a partially observed graph—that is a graph for which only a portion 

of the existing edges are known—we want to predict whether or not an edge exists between any 

given node pairs, as seen in Figure 6.1. Formally, let 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺 𝐺𝐺𝐺  be a graph where 𝑉𝑉 is its set of nodes 

and 𝐸𝐸 𝐸 𝐸𝐸0 ∪ 𝐸𝐸𝑢𝑢 is its set of edges. The set of edges 𝐸𝐸0 are known as observed links, while the set 

of edges 𝐸𝐸𝑢𝑢 are known as unknown links. The goal of the link prediction problem is to exploit the 

information of 𝑉𝑉 and 𝐸𝐸0 to estimate 𝐸𝐸𝑢𝑢. The partially observed graph can be seen here:

Figure 6.1: Partially observed graph with observed link 𝐸𝐸0 (solid lines) and unknown link 𝐸𝐸𝑢𝑢 
(dashed lines)

The link prediction problem is widely used in different domains, such as a recommender  

system, in order to propose friendships in social networks or items to purchase on e-commerce 

websites. It is also used in criminal network investigations in order to find hidden  

connections between criminal clusters, as well as in bioinformatics for the analysis of  

protein-protein interactions. In the next sections, we will discuss two families of approaches to 

solve the link prediction problem—namely, similarity-based and embedding-based methods.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter06
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter06
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Similarity-based methods
In this subsection, we show several simple algorithms to solve the link prediction problem. The 

main shared idea behind all these algorithms is to estimate a similarity function between each 

couple of nodes in a graph. If, according to the function, the nodes look similar, they will have 

a higher probability of being connected by an edge. We will divide these algorithms into two 

sub-families: index-based and community-based methods. The former contains all the methods 

through a simple calculation of an index based on the neighbors of a given couple of nodes. The 

latter contains more sophisticated algorithms, whereby the index is computed using information 

about the community to which a given pair of nodes belong. In order to give a practical example 

of these algorithms, we will use the standard implementation available in the networkx library 

in the networkx.algorithms.link_prediction package.

Index-based methods
In this section, we will show some algorithms available in networkx to compute the probability 

of an edge between two disconnected nodes. These algorithms are based on the calculation of a 

simple index through information obtained by analyzing the neighbors of the two disconnected 

nodes. Note that they are not implemented for DiGraph or MultiGraph and do not take relation-

ship weights into account, as implementing such approaches would require additional theoretical 

considerations on directionality, edge multiplicity, and weight impact on indices.

Resource allocation index
The resource allocation index method estimates the probability that two nodes 𝑣𝑣 and 𝑢𝑢 are  

connected by estimating the resource allocation index for all node pairs according to the following 

formula: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑢𝑢𝑢 𝑢𝑢) =  ∑ 1|𝑁𝑁(𝑤𝑤)|𝑤𝑤𝑤𝑤𝑤(𝑢𝑢)∩𝑁𝑁𝑁𝑁𝑁𝑁 

Here,  𝑁𝑁𝑁𝑁𝑁𝑁  and 𝑁𝑁𝑁𝑁𝑁𝑁  computes the neighbors of nodes 𝑢𝑢 and 𝑣𝑣, respectively, and 𝑤𝑤 is a node that 

is a neighbor of both 𝑢𝑢 and 𝑣𝑣. Thus, for each node 𝑤𝑤 in the common neighborhood 𝑁𝑁(𝑢𝑢) ∩ 𝑁𝑁𝑁𝑁𝑁𝑁 , 
the inverse of its degree 1/|𝑁𝑁(𝑤𝑤)|  captures the idea that nodes with fewer neighbors contribute 

more to the probability of an edge between 𝑢𝑢 and 𝑣𝑣.
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This index can be computed in networkx using the following code:

import networkx as nx

edges = [[1,3],[2,3],[2,4],[4,5],[5,6],[5,7]]

G = nx.from_edgelist(edges)

preds = nx.resource_allocation_index(G,[(1,2),(2,5),(3,4)])

The first parameter for the resource_allocation_index function is an input graph (depicted 

in Figure 6.1), while the second parameter is a list of possible edges. We want to compute the 

probability of a connection. As a result, we get the following output:

[(1, 2, 0.5), (2, 5, 0.5), (3, 4, 0.5)]

The output is a list containing couples of nodes such as (1,2), (2,5), and (3,4), which form the 

resource allocation index. According to this output, the probability of having an edge between 

those couples of nodes is 0.5.

Jaccard coefficient
The algorithm computes the probability of a connection between two nodes 𝑢𝑢 and 𝑣𝑣, according 

to the Jaccard coefficient, which measures the similarity between their neighborhoods as the ratio 

of the size of their intersection to the size of their union, computed as follows:𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽(𝑢𝑢𝑢 𝑢𝑢) =  |𝑁𝑁(𝑢𝑢) ∩ 𝑁𝑁(𝑣𝑣)||𝑁𝑁(𝑢𝑢) ∪ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁
The function can be used in networkx using the following code:

import networkx as nx

edges = [[1,3],[2,3],[2,4],[4,5],[5,6],[5,7]]

G = nx.from_edgelist(edges)

preds = nx.resource_allocation_index(G,[(1,2),(2,5),(3,4)])

The resource_allocation_index function has the same parameters as the previous function. 

The result of the code is shown here:

[(1, 2, 0.5), (2, 5, 0.25), (3, 4, 0.3333333333333333)]

According to this output, the probability of having an edge between nodes (1,2) is 0.5, while 

between nodes (2,5) this is 0.25, and between nodes (3,4) this is 0.333.
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In networkx, other methods to compute the probability of a connection between two nodes based 

on their similarity score are nx.adamic_adar_index and nx.preferential_attachment, based 

on Adamic/Adar index and preferential attachment index calculations respectively. Those functions 

have the same parameters as the others, and accept a graph and a list of a pair of nodes where 

we want to compute the score. In the next section, we will show another family of algorithms 

based on community detection.

Summarizing, index-based methods are well suited for social networks, recommendation systems 

with dense graphs, and applications where computational efficiency is a priority. Indeed, their 

simplicity and efficiency is one of their main strengths. They also work well in networks where 

local neighborhood information is sufficient to infer missing links. However, they may struggle 

in case of sparse networks where nodes have few connections. Furthermore, they do not consider 

higher-order structural properties of the graph.

Community-based methods
As with index-based methods, the algorithms belonging to this family also compute an index 

representing the probability of the disconnected nodes being connected. The main difference 

between index-based and community-based methods is related to the logic behind them. Indeed, 

community-based methods, before generating the index, need to compute information about the 

community belonging to those nodes. In this subsection, we will show—also providing several 

examples—some common community-based methods.

Community common neighbor
In order to estimate the probability of two nodes being connected, this algorithm computes the 

number of common neighbors and adds to this value the number of common neighbors belong-

ing to the same community. Formally, for two nodes 𝑣𝑣 and 𝑢𝑢, the community common neighbor 

value is computed as follows:𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑢𝑢𝑢 𝑢𝑢) = |𝑁𝑁(𝑣𝑣) ∪ 𝑁𝑁(𝑢𝑢)| +  ∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤𝑤𝑤𝑤(𝑣𝑣)∩ 𝑁𝑁𝑁𝑁𝑁𝑁 

In this formula, 𝑓𝑓(𝑤𝑤) = 1 if 𝑤𝑤 belongs to the same community of 𝑢𝑢 and 𝑣𝑣; otherwise, this is 0. 

The function can be computed in networkx using the following code:

import networkx as nx

edges = [[1,3],[2,3],[2,4],[4,5],[5,6],[5,7]]

G = nx.from_edgelist(edges)

G.nodes[1]["community"] = 0
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G.nodes[2]["community"] = 0

G.nodes[3]["community"] = 0

G.nodes[4]["community"] = 1

G.nodes[5]["community"] = 1

G.nodes[6]["community"] = 1

G.nodes[7]["community"] = 1

preds = nx.cn_soundarajan_hopcroft(G,[(1,2),(2,5),(3,4)])

From the preceding code snippet, it is possible to see how we need to assign the community 

property to each node of the graph. This property is used to identify nodes belonging to the same 

community when computing the function 𝑓𝑓𝑓𝑓𝑓𝑓  defined in the previous equation. The commu-

nity value, as we will see in the next section, can also be automatically computed using specific 

algorithms. As the example code above shows, the cn_soundarajan_hopcroft function takes 

the input graph and a couple of nodes for which we want to compute the score. As a result, we 

get the following output:

[(1, 2, 2), (2, 5, 1), (3, 4, 1)]

The output indicates the pairs of nodes and their corresponding scores, where the score reflects 

the number of shared neighbors between the nodes, adjusted by their community membership. 

The main difference from the previous function is in the index value. Indeed, we can easily see 

that the output is not in the range (0,1).

Community resource allocation
As with the previous method, the community resource allocation algorithm merges information 

obtained from the neighbors of the nodes with the community, as shown in the following formula:𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢𝑢 𝑢𝑢) =  ∑ 𝑓𝑓𝑓𝑓𝑓𝑓|𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑤𝑤𝑤𝑤𝑤(𝑣𝑣)∩𝑁𝑁𝑁𝑁𝑁𝑁 

Here, 𝑓𝑓(𝑤𝑤) = 1 if 𝑤𝑤 belongs to the same community of 𝑢𝑢 and 𝑣𝑣; otherwise, this is 0. The function 

can be computed in networkx using the following code:

import networkx as nx

edges = [[1,3],[2,3],[2,4],[4,5],[5,6],[5,7]]

G = nx.from_edgelist(edges)

G.nodes[1]["community"] = 0

G.nodes[2]["community"] = 0

G.nodes[3]["community"] = 0

G.nodes[4]["community"] = 1
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G.nodes[5]["community"] = 1

G.nodes[6]["community"] = 1

G.nodes[7]["community"] = 1

preds = nx. ra_index_soundarajan_hopcroft(G,[(1,2),(2,5),(3,4)])

From the preceding code snippet, it is possible to see how we need to assign the community property 

to each node of the graph. This property is used to identify nodes belonging to the same commu-

nity when computing the function 𝑓𝑓𝑓𝑓𝑓𝑓  defined in the previous equation. The community value, 

as we will see in the next section, can also be automatically computed using specific algorithms. 

As we saw, the ra_index_soundarajan_hopcroft function takes the input graph and a couple of 

nodes for which we want to compute the score. As a result, we get the following output:

[(1, 2, 0.5), (2, 5, 0), (3, 4, 0)]

From the preceding output, it is possible to see the influence of the community in the computa-

tion of the index. Since nodes 1 and 2 belong to the same community, they have a higher value 

in the index. On the contrary, edges (2,5) and (3,4) feature the value 0, since they belong to a 

different community from each other.

In networkx, two other methods to compute the probability of a connection between two nodes 

based on their similarity score merged with community information are nx.within_inter_

cluster and nx.common_neighbor_centrality.

Community-based methods, therefore, are best suited for applications where structural infor-

mation is crucial, such as criminal network analysis and protein-protein interaction networks, 

since they leverage community structure to improve accuracy. Furthermore, they are effective in 

detecting hidden connections in sparse networks. However, they are more computationally ex-

pensive than index-based methods and may require community detection as a preprocessing step.

In the next section, we will describe a more complex method based on machine learning tech-

niques and edge embedding to perform prediction of unknown edges.

Embedding-based methods
In this section, we describe a more advanced way to perform link prediction. The idea behind 

this approach is to solve the link prediction problem as a supervised classification task. More 

precisely, for a given graph, each couple of nodes is represented with a feature vector (𝑥𝑥), and a 

class label (𝑦𝑦) is assigned to each of those node couples. Formally, let 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺 𝐺𝐺𝐺  be a graph, and 

for each couple of nodes 𝑖𝑖𝑖 𝑖𝑖, we build the following formula:
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Here, 𝑓𝑓𝑖𝑖𝑖𝑖 ∈ 𝑥𝑥 is the feature vector representing the couple of nodes 𝑖𝑖𝑖 𝑖𝑖, and 𝑦𝑦𝑖𝑖𝑖𝑖𝑖 ∈ 𝑦𝑦 is their label. The 

value for 𝑦𝑦𝑖𝑖𝑖𝑖𝑖 is defined as follows: 𝑦𝑦𝑖𝑖𝑖𝑖𝑖 = 1 if, in the graph G, the edge connecting node 𝑖𝑖𝑖 𝑖𝑖 exists; 

otherwise, 𝑦𝑦𝑖𝑖𝑖𝑖𝑖 = 0. Using the feature vector and the labels, we can then train an ML algorithm in 

order to predict whether a given couple of nodes constitutes a plausible edge for the given graph.

If it is easy to build the label vector for each couple of nodes, it is not so straightforward to build 

the feature space. In order to generate the feature vector for each couple of nodes, we will use 

some embedding techniques, such as node2vec and edge2vec, already discussed in Chapter 4, 

Unsupervised Graph Learning. Using those embedding algorithms, the generation of the feature 

space will be greatly simplified. Indeed, the whole process can be summarized in two main steps, 

outlined as follows:

1.	 For each node of the graph G, its embedding vector is computed using a node2vec algorithm.

2.	 For all the possible pairs of nodes in the graph, the embedding is computed using an 

edge2vec algorithm.

We can now apply a generic ML algorithm to the generated feature vector in order to solve the 

classification problem.

In order to give you a practical explanation of this procedure, we will provide an example in 

the following code snippet. More precisely, we will describe the whole pipeline (from graph  

construction to link prediction) using the networkx, stellargraph, and node2vec libraries. We 

will split the whole process into different steps in order to simplify our understanding of the  

different parts. The link prediction problem was applied to the citation network dataset described 

in Chapters 1, Getting Started with Graphs, available at the following link: https://linqs-data.

soe.ucsc.edu/public/lbc/cora.tgz.

Have a look at the steps mentioned ahead.

We will build a networkx graph using the citation dataset, as follows:

import networkx as nx

import pandas as pd

edgelist = pd.read_csv("cora.cites", sep='\t', header=None, 
names=["target", "source"])

G = nx.from_pandas_edgelist(edgelist)

https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
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Since the dataset is represented as an edge list (see Chapters 1, Getting Started with Graphs), we 

used the from_pandas_edgelist function to build the graph.

Next, we need to create, from the graph G, training and test sets. More precisely, our training and 

test sets should contain not only a subset of real edges of the graph G but also couples of nodes 

that do not represent a real edge in G. The couples representing real edges will be positive instances 

(class label 1), while the couples that do not represent real edges will be negative instances (class 

label 0). This process can be easily performed as follows:

from stellargraph.data import EdgeSplitter

edgeSplitter = EdgeSplitter(G)

graph_test, samples_test, labels_test = edgeSplitter.train_test_
split(p=0.1, method="global")

We used the EdgeSplitter class available in stellargraph. The main constructor parameter of 

the EdgeSplitter class is the graph (G) we want to use to perform our split. The real splitting 

is performed using the train_test_split function, with p being the percentage of total edges 

to be returned (the percentage that will be allocated to the test set), which will generate the 

following outputs:

•	 graph_test is a subset of the original graph 𝐺𝐺 containing all the nodes but just a selected 

subset of edges.

•	 samples_test is a vector containing in each position a couple of nodes. This vector will 

contain couples of nodes representing real edges (positive instance) but also couples of 

nodes that do not represent real edges (negative instance).

•	 labels_test is a vector having the same length as samples_test. It contains only 0 or 1. 

The value of 0 is present in the position representing a negative instance in the samples_

test vector, while the value of 1 is present in the position representing a positive instance 

in samples_test.

By following the same procedure used to generate the test set, it is possible to generate the training 

set, as illustrated in the following code snippet:

edgeSplitter = EdgeSplitter(graph_test, G)

graph_train, samples_train, labels_train = edgeSplitter.train_test_
split(p=0.1, method="global")

The main difference in this part of code is related to the initialization of EdgeSplitter. In this 

case, we also provide graph_test in order to not repeat positive and negative instances generated 

for the test set.
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At this point, we have our training and testing datasets with negative and positive instances, 

where 81% of the edges are in graph_train and will be used to calculate the node2vec embeddings. 

9% of the edges are in samples_train, paired with an equal number of negative samples, while 

10% of the edges are in samples_test, also matched with an equal number of negative samples. 

For each of those instances, we now need to generate their feature vectors. In this example, we 

used the node2vec library to generate the node embedding. In general, every node embedding 

algorithm can be used to perform this task. For the training set, we can thus generate the feature 

vector with the following code:

from node2vec import Node2Vec

from node2vec.edges import HadamardEmbedder

node2vec = Node2Vec(graph_train)

model = node2vec.fit()

edges_embs = HadamardEmbedder(keyed_vectors=model.wv)

train_embeddings = [edges_embs[str(x[0]),str(x[1])] for x in samples_
train]

From the previous code snippet, it is possible to see the following:

•	 We generate the embedding for each node in the training graph using the node2vec library.

•	 We use the HadamardEmbedder class to generate the embedding of each couple of nodes 

contained in the training set. Those values will be used as feature vectors to perform the 

training of our model.

The previous step needs to also be performed for the test set, with the following code:

edges_embs = HadamardEmbedder(keyed_vectors=model.wv)

test_embeddings = [edges_embs[str(x[0]),str(x[1])] for x in samples_test]

The only difference here is given by the samples_test array used to compute the edge embeddings. 

Indeed, in this case, we use the data generated for the test set. Moreover, it should be noted that 

the node2vec algorithm was not recomputed for the test set. 

It is worth noticing that we generate the embeddings only for the training 

graph, since calculating embeddings or other node properties on the full graph,  

including test data, is a common mistake that leads to data leakage. Furthermore, in this  

example, we used the HadamardEmbedder algorithm, but in general, other embedding 

algorithms can be used, such as the ones described in Chapter 4, Unsupervised Graph 

Learning.
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Indeed, given the stochastic nature of node2vec, it is not possible to ensure that the two learned 

embeddings are “comparable” and therefore node2vec embeddings will change between runs.

Everything is set now. We can finally train—using the train_embeddings feature space and the 

train_labels label assignment—an ML algorithm to solve the label prediction problem, as 

follows:

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=1000)

rf.fit(train_embeddings, labels_train);

In this example, we used a simple RandomForestClassifier class, but every ML algorithm can 

be used to solve this task. We can then apply the trained model on the test_embeddings feature 

space in order to quantify the quality of the classification, as shown in the following code block:

from sklearn import metrics

y_pred = rf.predict(test_embeddings)

print('Precision:', metrics.precision_score(labels_test, y_pred))

print('Recall:', metrics.recall_score(labels_test, y_pred))

print('F1-Score:', metrics.f1_score(labels_test, y_pred))

As a result, we get the following output:

Precision: 0.8557114228456913

Recall: 0.8102466793168881

F1-Score: 0.8323586744639375

The methods we just described are just a general schema; each piece of the pipeline—such as the 

train/test split, the node/edge embedding, and the ML algorithm—can be changed according to 

the specific problem we are facing. For example, the choice of train/test split may vary depending 

on the size and structure of the graph: for large graphs, techniques like stratified sampling or 

temporal splits (that we will see in Chapter 11, Temporal Graph Machine Learning) may be more 

appropriate, while smaller graphs might allow for simpler random splits. Similarly, the embedding 

method, whether using node2vec or other algorithms, should be selected based on the graph’s 

characteristics (e.g., if the graph is dense or sparse, directed or undirected), as well as the specific 

downstream task.

This simple yet powerful pipeline can capture complex patterns beyond local neighborhood 

similarity. However, it requires high computational costs (to train and tune the ML algorithm) 

and performances, as in other supervised tasks, may depend on the quality and quantity of labels.
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In this section, we introduced the link prediction problem. We enriched our explanation by pro-

viding a description, with several examples, of different techniques used to find a solution to the 

link prediction problem. We showed that different ways to tackle the problem are available, from 

simple index-based techniques to more complex embedding-based techniques. However, it is 

worth noticing that the scientific literature is full of algorithms to solve the link prediction task. 

In the paper by Mutlu et al., Review on Learning and Extracting Graph Features for Link Prediction 

(https://arxiv.org/pdf/1901.03425.pdf), a good overview of different techniques used to solve 

the link prediction problem is available. In the next section, we will investigate the community 

detection problem.

Detecting meaningful structures such as communities
One common problem data scientists face when dealing with networks is how to identify clusters 

and communities within a graph. This often arises when graphs are derived from social networks 

for which communities are known to exist. However, the underlying algorithms and methods can 

also be used in other contexts, representing another option to perform clustering and segmen-

tation. For example, these methods can effectively be used in text mining to identify emerging 

topics and to cluster documents that refer to single events/topics. A community detection task 

consists of partitioning a graph such that nodes belonging to the same community are tightly 

connected with each other and are weakly connected with nodes from other communities. There 

exist several strategies to identify communities. In general, we can define them as belonging to 

one of two categories, outlined as follows:

•	 Non-overlapping community detection algorithms that provide a one-to-one association 

between nodes and communities, thus with no overlapping nodes between communities

•	 Overlapping community detection algorithms that allow a node to be included in more 

than one community—for instance, reflecting the natural tendencies of social networks 

to develop overlapping communities (for example, friends from school, neighbors, play-

mates, people being in the same football team, and so on), or in biology, where a single 

protein can be involved in more than one process and bioreaction.

In the following section, we will review some of the most used techniques in the context of com-

munity detection.

https://arxiv.org/pdf/1901.03425.pdf
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Embedding-based community detection
One class of methods that allow us to partition nodes into communities can be simply obtained 

by applying standard shallow clustering techniques on the node embeddings, computed using 

the methods described in Chapter 4, Unsupervised Graph Learning. The embedding methods in fact 

allow us to project nodes into a vector space where a distance measure that represents a similar-

ity between nodes can be defined. As we have shown in Chapter 4, Unsupervised Graph Learning, 

embedding algorithms are very effective in separating nodes with similar neighborhood and/or 

connectivity properties. Then, standard clustering techniques can be used, such as distance-based 

clustering (K-means), connectivity clustering (hierarchical clustering), distribution clustering 

(Gaussian mixture), and density-based clustering (Density-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN)). Depending on the algorithm, these techniques may both provide 

a single-association community detection or a soft cluster assignment. We will showcase how 

they would work on a simple barbell graph. We start by creating a simple barbell graph using 

the networkx utility function, as follows:

import networkx as nx

G = nx.barbell_graph(m1=10, m2=4)

We can then first get the reduced dense node representation using one of the embedding algo-

rithms we have seen previously (for instance, HOPE), shown as follows:

from gem.embedding.hope import HOPE

gf = HOPE(d=4, beta=0.01)

gf.learn_embedding(G)

embeddings = gf.get_embedding()

We can finally run a clustering algorithm on the resulting vector representation provided by the 

node embeddings, like this:

from sklearn.mixture import GaussianMixture

gm = GaussianMixture(n_components=3, random_state=0)

labels = gm.fit_predict(embeddings)

We can plot the network with the computed communities highlighted in different colors, like this:

colors = ["blue", "green", "red"]

nx.draw_spring(G, node_color=[colors[label] for label in labels])
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By doing so, you should obtain the output shown in the following screenshot:

Figure 6.2: Barbell graph where the community detection algorithm has been applied using 
embedding-based methods

The two clusters, as well as the connecting nodes, have been correctly grouped into three different 

communities, reflecting the internal structure of the graph.

Spectral methods and matrix factorization
Another way to achieve a graph partition is to process the adjacency matrix or the Laplacian 

matrix that represents the connectivity properties of the graph. For instance, spectral clustering 

can be obtained by applying standard clustering algorithms on the eigenvectors of the Laplacian 

matrix. In some sense, spectral clustering can also be seen as a special case of an embedding-based 

community detection algorithm where the embedding technique is so-called spectral embedding, 

obtained by considering the first k-eigenvectors of the Laplacian matrix. By considering different 

definitions of the Laplacian as well as different similarity matrices, variations to this method can 

be obtained. A convenient implementation of this method can be found within the communities 

Python library and can be used on the adjacency matrix representation easily obtained from a 

networkx graph, as illustrated in the following code snippet:

from communities.algorithms import spectral_clustering

adj=np.array(nx.adjacency_matrix(G).todense())

communities = spectral_clustering(adj, k=2)

Where k is the number of communities to cluster nodes into. Moreover, the adjacency matrix (or 

the Laplacian) can also be decomposed using matrix factorization techniques such as non-nega-

tive matrix factorization (NMF)—that allow similar descriptions, as illustrated in the following 

code snippet:
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from sklearn.decomposition import NMF

nmf = NMF(n_components=2)

score = nmf.fit_transform(adj)

communities = [set(np.where(score [:,ith]>0)[0])

               for ith in range(2)]

The threshold for belonging to the community was set in this example to 0, although other values 

can also be used to retain only the community cores. Note that these methods are overlapping 

community detection algorithms, and nodes might belong to more than one community.

Probability models
Community detection methods can also be derived from fitting the parameters of generative 

probabilistic graph models. Examples of generative models were already described in Chapter 

1, Getting Started with Graphs. However, they did not assume the presence of any underlying  

community, unlike the so-called stochastic block model (SBM). In fact, this model is based on 

the assumption that nodes can be partitioned into K disjoint communities and each community 

has a defined probability of being connected to another. Imagine we want to generate graphs 

with community structure. For a network of n nodes and K communities, the generative model 

can be parametrized by the following:

•	 Membership matrix: M, which is an n x K matrix, represents the probabilities of each 

node belonging to each community. For a node i, the row 𝑀𝑀𝑖𝑖  contains the probabilities 

for i being in each of the K communities. Sampling from this distribution gives the com-

munity assignment 𝑔𝑔𝑖𝑖 .
•	 Probability matrix: B, which is a K x K matrix and represents the probability of an edge 

existing between two nodes based on their community assignment. For communities 𝑔𝑔𝑖𝑖  
and 𝑔𝑔𝑗𝑗, the edge probability is 𝐵𝐵𝑔𝑔𝑖𝑖𝑔𝑔𝑗𝑗.

The adjacency matrix A of the graph is then generated probabilistically by the following formula:

𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) = {𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝑔𝑔𝑖𝑖,𝑔𝑔𝑗𝑗) , 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖0, 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖  𝐴𝐴𝑗𝑗𝑗𝑗𝑗 , 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖
For community detection, the goal is reversed. Instead of generating A from M and B, we  

estimate the community membership (M) and the connection probabilities (B) given the observed 

adjacency matrix A. This can be done via maximum likelihood estimation, which identifies the 

M and B that best explain A. 
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Note that the SBM in the limit of the constant probability matrix (that is, 𝐵𝐵𝑖𝑖𝑖𝑖 = 𝑝𝑝) corresponds to 

the Erdős-Rényi model. These models have the advantage of also describing a relation between 

communities, identifying community-community relationships. This is particularly useful in 

large-scale-graphs for tasks like social network analysis or biological network modeling.

It is worth noticing that we explained here the idea of the method, but the actual implementation 

would be more complex. A more detailed mathematical formulation can be found in the paper A 

review of stochastic block models and extensions for graph clustering (Lee and Wilkinson, 2019).

Cost function minimization
Community detection in graphs can be approached by optimizing a cost function that evaluates 

the structure of the graph. Such cost functions typically reward edges within the same community 

while penalizing edges between different communities. One popular approach involves defining a 

measure of community quality (such as modularity, for example) and optimizing the assignment 

of nodes to communities to maximize this measure.

For a binary community structure, each node i is assigned a community label 𝑆𝑆𝑖𝑖 , a variable that 

takes the values 1 or -1 depending on whether the node belongs to one or two communities. The 

association between two nodes i and j can then be expressed using their labels, 𝑆𝑆𝑖𝑖  and 𝑆𝑆𝑗𝑗. Therefore, 

a cost function to evaluate the presence of edges between different communities can be defined as:∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖(1 − 𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Where 𝐴𝐴 is the adjacency matrix of the graph. When two connected nodes 𝐴𝐴𝑖𝑖𝑖𝑖 > 0 belong to a 

different community 𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗 = −1, the contribution provided by the edge is positive. On the other 

hand, the contribution is 0, both when two nodes are not connected (𝐴𝐴𝑖𝑖𝑖𝑖 = 0) and when two 

connected nodes belong to the same community (𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗 = 0). Therefore, the problem is to find 

the best community assignment (𝑆𝑆𝑖𝑖  and 𝑆𝑆𝑗𝑗) in order to minimize the preceding function. This 

method, however, applies only to binary community detection and is therefore rather limited in 

its application.

Another very popular algorithm belonging to this class is the Louvain method, which takes its 

name from the university where it was invented. This algorithm aims to maximize the modularity, 

defined as follows: 𝑄𝑄 𝑄 𝑄 12𝑚𝑚 ∑ (𝐴𝐴𝑖𝑖𝑖𝑖 −  𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗2𝑚𝑚 ) 𝛿𝛿𝛿𝛿𝛿𝑖𝑖, 𝑐𝑐𝑗𝑗)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
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Here, 𝑚𝑚 represents the number of edges, 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑗𝑗 represent the degree of the i-th and j-th node 

respectively, and 𝛿𝛿𝛿𝛿𝛿𝑖𝑖, 𝑐𝑐𝑗𝑗)  is the Kronecker delta function, which is 1 when 𝑐𝑐𝑖𝑖  and 𝑐𝑐𝑗𝑗 belong to the 

same community  and 0 otherwise.

By subtracting from the adjacency matrix the expected number of edges that i and j would have in 

a random graph, 𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗/2𝑚𝑚, we can estimate how much the actual graph is deviating from the random-

ness (the Kronecker delta function ensures contribution from only pairs in the same community). 

The summation, then, aggregates this information across all node pairs, and the division by 2𝑚𝑚 
normalizes modularity, keeping it between −1 and 1. A higher Q indicates that the detected com-

munities have more internal edges than expected by chance, highlighting meaningful structure.

To maximize this modularity efficiently, the Louvain methods iteratively compute the following 

steps, until no further improvement in modularity can be achieved:

1.	 Modularity optimization: Nodes are swept iteratively, and for each node we compute 

the change of modularity Q there would be if the node were to be assigned to each com-

munity of its neighbors. Once all the ∆𝑄𝑄 values are computed, the node is assigned to the 

community that provides the largest increase. If there is no increase obtained by placing 

the node in any other community than the one it is in, the node remains in its original 

community. This optimization process continues until no changes are induced.

2.	 Node aggregation: In the second step, we build a new network by grouping all the nodes 

in the same community and connecting the communities using edges that result from the 

sum of all edges across the two communities. Edges within communities are accounted 

for as well by means of self-loops that have weights resulting from the sum of all edge 

weights belonging to the community.

A Louvain implementation can already be found in the communities library, as can be seen in the 

following code snippet:

from communities.algorithms import louvain_method

communities = louvain_method(adj)

Another method to maximize the modularity is the Girvan-Newman algorithm, which is based 

on iteratively removing edges that have the highest betweenness centrality (and thus connect 

two separate clusters of nodes) to create connected component communities. Here is the code 

related to this:

from communities.algorithms import girvan_newman

communities = girvan_newman(adj, n=2)
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Detecting graph similarities and graph matching
Learning a quantitative measure of the similarity among graphs is considered a key problem.  

Indeed, it is a critical step for network analysis and can also facilitate many ML problems, such as 

classification, clustering, and ranking. Many clustering algorithms, for example, use the concept 

of similarity for determining if an object should or should not be a member of a group.

In the graph domain, finding an effective similarity measure constitutes a crucial problem for 

many applications. Consider, for instance, the role of a node inside a graph. This node might be 

very important for spreading information across a network or guaranteeing network robustness: 

for example, it could be the center of a star graph or it could be a member of a clique. In this  

scenario, it would be very useful to have a powerful method for comparing nodes according to 

their roles. For example, you might be interested in searching for individuals showing similar 

roles or presenting similar unusual and anomalous behaviors. You might also use it for searching 

similar subgraphs or to determine network compatibility for knowledge transfer. For example, if 

you find a method for increasing the robustness of a network and you know that such a network 

is very similar to another one, you may apply the same solution that worked well for the first 

network directly to the second one:

Figure 6.3: Example of differences between two graphs

NOTE

The latter algorithm needs to compute the betweenness centrality of all edges to 

remove the edges. Such computations may be very expensive in large graphs. The Gir-

van-Newman algorithm in fact scales as 𝑛𝑛 𝑛 𝑛𝑛2, where 𝑚𝑚 is the number of edges and 𝑛𝑛 is the number of nodes, and should not be used when dealing with large datasets.
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Several metrics can be used for measuring the similarity (distance) between two objects. Some 

examples include the Euclidean distance, Manhattan distance, cosine similarity, and so on. However, 

these metrics might fail to capture the specific characteristics of the data being studied, especially 

on non-Euclidean structures such as graphs. Take the setup shown in Figure 6.3: how “distant” 

are G1 and G2? They indeed look pretty similar. But what if the missing connection in the red 

community of G2 causes a severe loss of information? Do they still look similar?

Several algorithmic approaches and heuristics have been proposed for measuring similarity among 

graphs, based on mathematical concepts such as graph isomorphism, edit distance, and common  

subgraphs (we suggest reading https://link.springer.com/article/10.1007/s10044-

012-0284-8 for a detailed review). Many of these approaches are currently used in practical  

applications, even if they often require exponentially high computational time to provide a  

solution to NP-complete problems in general (where NP stands for nondeterministic  

polynomial time). Therefore, it is essential to find or learn a metric for measuring the similarity 

of data points involved in the specific task. Here is where ML comes to our aid.

Many algorithms among the ones we have already seen in Chapter 4, Unsupervised Graph  

Learning, and Chapter 5, Supervised Graph Learning, might be useful for learning an effective sim-

ilarity metric. According to the way they are used, a precise taxonomy can be defined. Here, we 

provide a simple overview of graph similarity techniques. A more comprehensive list can be found 

in the paper Deep Graph Similarity Learning: A Survey (https://arxiv.org/pdf/1912.11615.pdf). 

They can be essentially divided into three main categories, even if sophisticated combinations can 

also be developed. Graph embedding-based methods use embedding techniques to obtain an 

embedded representation of the graphs and exploit such a representation to learn the similarity 

function; graph kernel-based methods define the similarity between graphs by measuring the 

similarity of their constituting substructures; graph neural network-based methods use graph 

neural networks (GNNs) to jointly learn an embedded representation and a similarity function. 

Let’s see all of them in more detail.

Graph embedding-based methods
Such techniques seek to apply graph embedding techniques to obtain node-level or graph- 

level representations and further use the representations for similarity learning. For example,  

DeepWalk and Node2Vec can be used to extract meaningful embedding that can then be used 

to define a similarity function or to predict similarity scores. For example, in Tixier et al. (2015), 

node2vec was used for encoding node embeddings for representing a graph as an image. 

https://link.springer.com/article/10.1007/s10044-012-0284-8
https://link.springer.com/article/10.1007/s10044-012-0284-8
https://arxiv.org/pdf/1912.11615.pdf
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Specifically, two-dimensional (2D) histograms obtained from those node embeddings were 

passed to a classical 2D convolutional neural network (CNN) architecture designed for  

images. Such a simple yet powerful approach enabled good results to be obtained for many 

benchmark datasets.

Let’s see an example of how such methods could work. First, let’s define a toy dataset with simple 

graphs and let’s define random labels for each graph:

# Create toy dataset with simple graphs

num_graphs = 10

graphs = [nx.erdos_renyi_graph(10, np.random.rand()) for _ in range(num_
graphs)]

# Generate random labels

labels = [np.random.choice([0,1]) for _ in range(num_graphs)]

We can now define a proper function to generate the 2D histograms and use it on node embeddings:

# Function to generate 2D histogram from node embeddings

def generate_2d_histogram(node_embeddings, bins=16):

    # Flatten embeddings to create histograms

    embeddings = np.vstack(node_embeddings)

    histogram, xedges, yedges = np.histogram2d(embeddings[:, 0], 
embeddings[:, 1], bins=bins)

    return histogram

# Prepare graph-level 2D histograms from node embeddings

graph_histograms = []

for i, graph in enumerate(graphs):

    node2vec = Node2Vec(graph, dimensions=64, walk_length=10, num_
walks=80, workers=4)

    model = node2vec.fit()

    node_embeddings = [model.wv.get_vector(str(node)) for node in graph.
nodes()]

    histogram = generate_2d_histogram(node_embeddings)

    graph_histograms.append(histogram)

We can now split our dataset into training and testing sets:

# Split histograms into training and testing sets

train_histograms, test_histograms, train_labels, test_labels = train_test_
split(graph_histograms, labels, test_size=0.5, random_state=42)
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Finally, let’s define and train our GraphCNN model. We will be using PyTorch for this:

# Initialize and train the CNN model

num_classes = 2  # Binary classification

input_channels = 1  # Single channel for histogram

bins = 16  # Same as used in generate_2d_histogram function

train_histograms = train_histograms.unsqueeze(1)  # Add channel dimension

test_histograms = test_histograms.unsqueeze(1)

cnn_model = GraphCNN(input_channels, num_classes)

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(cnn_model.parameters(), lr=0.001)

# Training loop

cnn_model.train()

epochs = 20

for epoch in range(epochs):

    optimizer.zero_grad()

    outputs = cnn_model(train_histograms)

    loss = criterion(outputs, torch.tensor(train_labels, dtype=torch.
long))

    loss.backward()

    optimizer.step()

    print(f"Epoch {epoch+1}/{epochs}, Loss: {loss.item()}")

# Evaluate on test set

cnn_model.eval()

with torch.no_grad():

    test_outputs = cnn_model(test_histograms)

    predictions = torch.argmax(test_outputs, axis=1)

    accuracy = accuracy_score(test_labels, predictions.numpy())

    print(f"Test Accuracy: {accuracy}")

The above code is an example based on a toy random dataset. For this reason, the accuracy would 

probably be low. However, it effectively shows how such a technique can be used on real graphs 

and we will invite the reader to explore this approach as an exercise.
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Graph kernel-based methods
Graph kernel-based methods have generated a lot of interest in terms of capturing the similarity 

between graphs. These approaches compute the similarity between two graphs as a function of 

the similarities between some of their substructures. Different graph kernels exist based on the 

substructures they use, which include random walks, shortest paths, and subgraphs. 

As an example, a method called Deep Graph Kernels (DGK) (Yanardag et al., 2015) decomposes 

graphs into substructures that are viewed as “words.” Then, natural language processing (NLP) 

approaches such as continuous bag of words (CBOW) and skip-gram are used to learn latent 

representations of the substructures. This way, the kernel between two graphs is defined based 

on the similarity of the substructure space.

Let’s see how such an approach can be used on the toy dataset generated in the previous example. 

First, let’s define a proper function to decompose graphs into substructures using random walks. 

Then, let’s use it to create a “document” for each graph:

# Decompose graphs into substructures using random walks

def random_walks_as_words(graph, walk_length=6, num_walks=10):

    """Generates 'words' from random walks on the graph."""

    walks = []

    for _ in range(num_walks):

        for node in graph.nodes():

            walk = [str(node)]

            for _ in range(walk_length - 1):

                neighbors = list(graph.neighbors(int(walk[-1])))

                if neighbors:

                    walk.append(str(np.random.choice(neighbors)))

                else:

                    break

            walks.append(" ".join(walk))

    return walks

# Create a "document" for each graph using its random walks

graph_documents = []

for graph in graphs:

    walks = random_walks_as_words(graph)

    # Combine all walks into a single document

    graph_documents.append(" ".join(walks))
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We can now use the CountVectorizer function to create a numerical representation of each graph 

based on the frequency of specific patterns or features. This function processes a collection of 

textual data and generates a matrix where each entry indicates how often a particular pattern 

or feature appears in the graph:

# Generate "bag of words" representation for each graph

vectorizer = CountVectorizer()

# Sparse matrix of shape (num_graphs, num_features)

graph_bow = vectorizer.fit_transform(graph_documents)

Then, we can compute pairwise similarity out of it:

# Compute pairwise similarities between graphs

graph_similarity_matrix = cosine_similarity(graph_bow)

We now have all the ingredients to train a machine learning algorithm. As usual, we will now 

split the dataset into training and test sets and use the similarity matrix as input features for a 

classification task:

# Split dataset into training and testing sets

train_indices, test_indices = train_test_split(range(len(graphs)), test_
size=0.5, random_state=42)

train_similarity = graph_similarity_matrix[np.ix_(train_indices, train_
indices)]

test_similarity = graph_similarity_matrix[np.ix_(test_indices, train_
indices)]  # Test against training similarities

train_labels = [labels[i] for i in train_indices]

test_labels = [labels[i] for i in test_indices]

# Train a classifier using the training similarity matrix

svm = SVC(kernel="precomputed")  # Precomputed kernel

svm.fit(train_similarity, train_labels)

# Predict on the test set

test_predictions = svm.predict(test_similarity)
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# Evaluate the classification accuracy

accuracy = accuracy_score(test_labels, test_predictions)

print(f"Test Accuracy using Deep Graph Kernels (DGK): {accuracy}")

Also, in this case, the output is not meaningful, since we are training the algorithm on random 

labels for demonstration purposes. Feel free to use the approach on a real dataset!

It is worth noticing that we have introduced some NLP concepts here. We will cover the topic in 

more detail in Chapter 8, Text Analytics and Natural Language Processing Using Graphs.

GNN-based methods
With the emergence of deep learning (DL) techniques, GNNs have become a powerful new tool 

for learning representations on graphs. Such powerful models can be easily adapted to various 

tasks, including graph similarity learning. Furthermore, they present a key advantage with respect 

to other traditional graph embedding approaches. Indeed, while the latter generally learn the 

representation in an isolated stage, in this kind of approach, the representation learning and the 

target learning task are conducted jointly. Therefore, the GNN deep models can better leverage 

the graph features for the specific learning task. We have already seen an example of similarity 

learning using GNNs in Chapter 4, Unsupervised Graph Learning, where a two-branch network 

was trained to estimate the proximity distance between two graphs.

Applications
Similarity learning on graphs has already achieved promising results in many domains.  

Important applications may be found in chemistry and bioinformatics—for example, for  

finding the chemical compounds that are most similar to a query compound, as illustrated on the  

left-hand side of the following diagram. In neuroscience, similarity learning methods have started 

to be applied to measure the similarity of brain networks among multiple subjects, allowing the 

novel clinical investigation of brain diseases.
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Figure 6.4: Example of how graphs can be useful for representing various objects: (a) differences 
between two chemical compounds; (b) differences between two human poses

Graph similarity learning has also been explored in computer security, where novel  

approaches have been proposed for the detection of vulnerabilities in software systems as well as  

hardware security problems (a survey of these approaches can be found at https://eprint.

iacr.org/2019/983.pdf). Recently, a trend for applying such solutions to solve computer vision 

problems has been observed (you may check https://ieeexplore.ieee.org/document/9263681 

for further reading). Once the challenging problem of converting images into graph data has 

been solved, interesting solutions can indeed be proposed for human action recognition in  

video sequences and object matching in scenes, among other areas. In the context of human 

action recognition, graphs provide an intuitive way to model the human body. Here, body joints 

(e.g., elbows, knees, shoulders) are represented as nodes, while the connections between them 

(e.g., bones) serve as edges. This creates a graph that encodes the spatial relationships and  

hierarchical structure of the human body (as shown on the right-hand side of Figure 6.4).

Therefore, such graphs can be studied using flexible techniques such as GCN, which can  

capture both local and global patterns in the data. Notice also that temporal relationships can be  

exploited (which are critical for understanding actions) by creating spatio-temporal graphs where  

multiple body pose graphs are connected over time. These approaches enable effective recognition 

of complex human activities by leveraging both spatial and temporal dynamics. We will learn 

more about temporal graphs in Chapter 11, Temporal Graph Machine Learning.

https://eprint.iacr.org/2019/983.pdf
https://eprint.iacr.org/2019/983.pdf
https://ieeexplore.ieee.org/document/9263681
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Summary
In this chapter, we have learned how graph-based ML techniques can be used to solve 

many different problems. In particular, we have seen that the same algorithm (or a slightly  

modified version) can be adapted to solve apparently very different tasks such as link prediction,  

community detection, and graph similarity learning. We have also seen that each problem has its own  

peculiarities, which have been exploited by researchers in order to design more sophisticated 

solutions.

In the next chapter, we will explore real-world problems related to social networking that can 

be solved using graph-based ML.



Part 3
Practical Applications of 
Graph Machine Learning

In this part, you will acquire a more practical knowledge of methods outlined in previous chapters 

by applying them to real-world use cases and learn how to scale out the approaches to structured 

and unstructured datasets.

This part comprises the following chapters:

•	 Chapter 7, Social Network Graphs

•	 Chapter 8, Text Analytics and Natural Language Processing Using Graphs

•	 Chapter 9, Graphs Analysis for Credit Card Transactions

•	 Chapter 10, Building a Data-Driven Graph-Powered Application





7
Social Network Graphs

The growth of social networking sites has been one of the most active trends in digital media 

over recent years. Since the late 1990s, when the first social applications were published, they 

have attracted billions of active users worldwide, many of whom have integrated digital social  

interactions into their daily lives. New ways of communication are being driven by social networks 

such as Facebook, Twitter, and Instagram, among others. Users can share ideas, post updates 

and feedback, or engage in activities and events while sharing their broader interests on social 

networking sites.

Besides, social networks constitute a huge source of information for studying user behaviors, 

interpreting the interaction among people, and predicting their interests. Structuring them as 

graphs, where a vertex corresponds to a person and an edge represents the connection between 

them, provides a powerful tool to extract useful knowledge.

However, understanding the dynamics that drive the evolution of the social network is a complex 

problem due to a large number of variable parameters.

In this chapter, we will talk about how we can analyze the Facebook social network using graph 

theory and how we can solve useful problems such as link prediction and community detection 

using machine learning.

The following topics will be covered in this chapter:

•	 Overview of the dataset

•	 Network topology and community detection

•	 Embedding for supervised and unsupervised tasks



Social Network Graphs214

Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter07. Please refer to the Practical exercises section of 

Chapter 1, Getting Started with Graphs, for guidance on how to set up the environment to run the 

examples in this chapter, using either Poetry, pip, or docker.

Overview of the dataset
We will be using a SNAP public dataset, social circles: Facebook, from Stanford University 

(https://snap.stanford.edu/data/ego-Facebook.html).

The dataset was created by collecting Facebook user information from survey participants. In 

more detail, ego networks were created for 10 users. Each user was asked to identify all the circles 

(list of friends) to which their friends belong. On average, each user identified 19 circles in their 

ego networks, where each circle has on average 22 friends.

For each user, the following information was collected:

•	 Edges: An edge exists if two users are friends on Facebook.

•	 Node features: Features are scored as 1 if the user has this property in their profile and 0 

otherwise. Features have been anonymized since the names of the features would reveal 

private data.

The 10 ego networks were then unified in a single graph that we are going to study.

Dataset download
The dataset can be retrieved using the following URL: https://snap.stanford.edu/data/

ego-Facebook.html. In particular, three files can be downloaded: facebook.tar.gz, facebook_

combined.txt.gz, and redme-Ego.txt. Let’s inspect each file separately:

•	 facebook.tar.gz: This is an archive containing four files for each ego user (40 files in 

total). Each file is named using the format nodeId.extension, where nodeId is the node 

ID of the ego user and extension is one of edges, circles, feat, egofeat, or featnames. This is 

explained in more detail here:

a.	 nodeId.edges: Contains a list of edges for the network of node nodeId.

b.	 nodeId.circles: Contains several lines (one for each circle). Each line consists of 

a name (the circle name) followed by a series of node IDs.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter07
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter07
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ego-Facebook.html
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c.	 nodeId.feat: Contains the features (0 if nodeId has that feature, 1 otherwise) for 

each node in the ego network.

d.	 nodeId.egofeat: Contains the features of the ego user.

e.	 nodeId.featname: Contains the names of the features.

•	 facebook_combined.txt.gz: This is an archive containing a single file, facebook_combined.

txt, which is a list of edges from all the ego networks combined.

•	 readme-Ego.txt: This contains a description of the above-mentioned files.

Take a look at those files by yourself. It is strongly suggested to explore and become as comfortable 

as possible with the dataset before starting any machine learning task.

Loading the dataset using networkx
The first step of our analysis will be loading the aggregated ego networks using networkx. As 

we have seen in the previous chapters, networkx is powerful for graph analysis and, given the 

size of the datasets, will be the perfect tool for the analysis that we will be doing in this chapter. 

However, for larger social network graphs with billions of nodes and edges, more specific tools 

might be required for loading and processing them. We will cover the tools and technologies 

used for scaling out the analysis in Chapter 10, Building a Data-Driven Graph-Powered Application.

As we have seen above, the combined ego network is represented as a list of edges. We can create 

an undirected graph from a list of edges using networkx as follows:

G = nx.read_edgelist("facebook_combined.txt", create_using=nx.Graph(), 
nodetype=int)

Notice that here we are using an undirected graph because connections on Facebook are  

undirected: when you accept someone’s friend request, you are added to their friend list and vice 

versa (that is, an undirected edge is added to the graph).

Let’s print some basic information about the graph:

print(nx.info(G))

The output should be as follows:

Name:

Type: Graph

Number of nodes: 4039

Number of edges: 88234

Average degree:  43.6910
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As we can see, the aggregated network contains 4039 nodes and 88234 edges. This is a fairly  

connected network with the number of edges being more than 20 times the number of nodes. Due 

to the nature of the network, it is expected that several clusters will emerge, particularly because 

of the small-world properties of the individual ego networks. In a small-world network, nodes 

are highly clustered, meaning that individuals (or nodes) are more likely to be connected to their 

immediate neighbors, and groups of tightly connected nodes (clusters) form naturally. These 

clusters represent subgroups of ego users, each with their own localized connections, which are 

typically observed in social network structures.

Drawing the network will also help with better understanding what we are going to analyze. We 

can draw the graph using networkx as follows:

nx.draw_networkx(G, pos=spring_pos, with_labels=False, node_size=35)

The output should be as follows:

Figure 7.1 – The aggregated Facebook ego network

We can observe the presence of highly interconnected hubs. This is interesting from a social  

network analysis point of view since these hubs may result from underlying social mechanisms, 

such as the presence of influential individuals or key opinion leaders. For example, highly  

interconnected hubs could represent influential people in a community who have strong  

relationships with a large number of others, often acting as connectors between different groups. 

These hubs might also emerge due to mechanisms like preferential attachment (where new nodes 

are more likely to connect to already well-connected nodes) or homophily (where individuals 

tend to connect with others who are similar to themselves). These mechanisms can be further  

investigated to better understand the structure of an individual’s relationships within their social 

world.
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Before continuing our analysis, let’s save the IDs of the ego-user nodes inside the network. We 

can retrieve them from the files contained in the facebook.tar.gz archive.

First, unpack the archive. The extracted folder will be named facebook. Let’s run the following 

Python code for retrieving the IDs by taking the first part of each filename:

ego_nodes = set([int(name.split('.')[0]) for name in 
os.listdir("facebook/")])

We are now ready to analyze the graph. In particular, in the next section, we will better understand 

the structure of the graph by inspecting its properties. This will help us to have a clearer idea of 

its topology and its relevant characteristics.

Analyzing the graph structure
Understanding the topology of the network, the role of its nodes, and the presence of  

communities is a crucial step in the analysis of the social network. It is important to keep in mind 

that, in this context, nodes are actually users, each with its own interests, habits, and behaviors. 

Such knowledge will be extremely useful when performing predictions and/or finding insights.

We will be using networkx to compute a few useful metrics we have seen in Chapter 1, Getting 

Started with Graphs. We will try to give them an interpretation to collect insight into the graph. 

Let’s begin as usual, by importing the required libraries and defining some variables that we will 

use throughout the code:

import os

import math

import numpy as np

import networkx as nx

import matplotlib.pyplot as plt

default_edge_color = 'gray'

default_node_color = '#407cc9'

enhanced_node_color = '#f5b042'

enhanced_edge_color = '#cc2f04'

We can now proceed to the analysis.
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Topology overview
As we have already seen before, our combined network has 4,039 nodes and more than 80,000 

edges. The next metric we will compute is assortativity. It will reveal information about the 

tendency of users to be connected with users with a similar degree. We can do that as follows:

assortativity = nx.degree_pearson_correlation_coefficient(G)

The output should be as follows:

0.06357722918564912

The assortativity coefficient ranges from -1 to 1, where a value of 1 indicates a perfect positive 

correlation (users tend to connect with others of similar degree) and -1 indicates a perfect  

negative correlation (users tend to connect with others of different degree). Here, we can observe 

a positive assortativity, likely showing that well-connected individuals associate with other well- 

connected individuals (as we have seen in Chapter 1, Getting Started with Graphs). This is expected 

since inside each circle, users tend to be highly connected to each other.

Transitivity could also help with better understanding how individuals are connected. Recall 

transitivity indicates the mean probability that two people with a common friend are themselves 

friends. Transitivity can range from 0 (no probability) to 1 (certainty):

t = nx.transitivity(G)

The output should be as follows:

0.5191742775433075

Here we have the half probability that two friends can or cannot have common friends.

The observation is also confirmed by computing the average clustering coefficient. The average 

clustering coefficient ranges from 0 (no clustering) to 1 (perfect clustering). Indeed, it can be 

considered as an alternative definition of transitivity:

aC = nx.average_clustering(G)

The output should be as follows:

0.6055467186200876

Notice that the clustering coefficient tends to be higher than the transitivity. Indeed, by definition, 

it puts more weight on vertices with a low degree, since they have a limited number of possible 

pairs of neighbors (the denominator of the local clustering coefficient).
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Node centrality
Once we have a clearer idea of what the overall topology looks like, we can proceed by  

investigating the importance of each individual inside the network. In Chapter 1, Getting Started 

with Graphs, we understood the significance of betweenness centrality. It measures how many 

shortest paths pass through a given node, giving an idea of how central that node is for the  

spreading of information inside the network. The betweenness centrality can range from 0 (no 

shortest path passes through the node) to a higher value, with larger values indicating more 

central nodes. We can compute it using:

bC = nx.betweenness_centrality(G)

np.mean(list(bC.values()))

The output should be as follows:

0.0006669573568730229

The average betweenness centrality is pretty low, which is understandable given the large amount 

of non-bridging nodes inside the network. In other words, many nodes have few or no shortest 

paths passing through them, which reduces their centrality. This suggests that the network may 

have many nodes that are more peripheral or isolated in terms of information flow. However, 

we could collect better insights by visually inspecting the graph. In particular, we will draw the 

combined ego network by enhancing nodes with the highest betweenness centrality. Let’s define 

a proper function for this:

def draw_metric(G, dct, spring_pos):

  top = 10

  max_nodes =  sorted(dct.items(), key=lambda v: -v[1])[:top]

  max_keys = [key for key,_ in max_nodes]

  max_vals = [val*300 for _, val in max_nodes]

  plt.axis("off")

  nx.draw_networkx(G,

                   pos=spring_pos,

                   cmap='Blues',

                   edge_color=default_edge_color,

                   node_color=default_node_color,

                   node_size=3,

                   alpha=0.4,

                   with_labels=False)
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  nx.draw_networkx_nodes(G,

                         pos=spring_pos,

                         nodelist=max_keys,

                         node_color=enhanced_edge_color,

                         node_size=max_vals)

Now let’s invoke it as follows:

draw_metric(G,bC,spring_pos)

The output should be as follows:

Figure 7.2: Betweenness centrality

Let’s also inspect the degree centrality of each node. Since this metric is related to the number of 

neighbors of a node, we will have a clearer idea of how nodes are well connected to each other. 

A higher degree centrality means that a node has more connections, which often indicates its 

importance in the network:

deg_C = nx.degree_centrality(G)

np.mean(list(deg_C.values()))

draw_metric(G,deg_C,spring_pos)

The output should be as follows:

0.010819963503439287
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Figure 7.3: Degree centrality

This value represents the average degree centrality across all nodes in the network. Given that 

degree centrality ranges from 0 (no connections) to 1 (the most connected node), this value  

suggests that, on average, the nodes in the network have relatively few connections.

Next, let’s look at the closeness centrality, which helps us understand how close nodes are to 

each other in terms of the shortest path. A higher closeness centrality means a node is closer, on 

average, to all other nodes in the network:

clos_C = nx.closeness_centrality(G)

np.mean(list(clos_C.values()))

draw_metric(G,clos_C,spring_pos)

The output should be as follows:

0.2761677635668376

Figure 7.4: Closeness centrality
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The closeness centrality ranges from 0 (isolated nodes) to 1 (nodes that can reach all other nodes 

in the fewest steps). Here, the average closeness centrality suggests that most nodes are somewhat 

close to each other, but not extremely close on average.

Overall, from the centrality analysis, it is interesting to observe that each central node seems to be 

part of a sort of community (this is reasonable, since central nodes might correspond to ego nodes 

of the network). It is also interesting to notice the presence of a bunch of highly interconnected 

nodes (especially from the closeness centrality analysis). Let’s thus identify these communities 

in the next part of our analysis.

Community detection
Since we are performing social network analysis, it is worth exploring one of the most  

interesting graph structures for social networks: communities. If you use Facebook, it is very likely 

that your friends reflect different aspects of your life: friends from the educational environment 

(high school, college, and so on), friends from your weekly football match, friends you have met 

at parties, and so on.

An interesting aspect of social network analysis is to automatically identify such groups. This 

can be done automatically, inferring them from topological properties, or semi-automatically, 

exploiting some prior insight.

As we have seen in Chapter 1, Getting Started with Graphs, and Chapter 6, Solving Common 

Graph-Based Machine Learning Problems, one good criterion is to try to compute the  

partition of the graph nodes that maximizes the modularity using the Louvain heuristics. 

Recall that modularity evaluates whether the density of edges within communities is higher 

than what would be expected in a random graph with the same degree distribution. By aiming 

to maximize modularity, we ensure that the computed partition reflects significant community 

structure, meaning the groups are highly interconnected internally but sparsely connected to 

other groups.

We can do that in networkx with the help of the python-louvain package, as follows:

import community

parts = community.best_partition(G)

values = [parts.get(node) for node in G.nodes()]

n_sizes = [5]*len(G.nodes())

plt.axis("off")
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nx.draw_networkx(G, pos=spring_pos, cmap=plt.get_cmap("Blues"), edge_
color=default_edge_color, node_color=values, node_size=n_sizes, with_
labels=False)

The output should be as follows:

Figure 7.5: Detected communities using networkx

In terms of social network analysis, the detected clusters likely represent groups of tightly  

connected individuals who share similar interests, affiliations, or social contexts. For  

example, dense clusters, represented in the figure using different colors, may correspond to groups, 

such as family units or friend groups. Furthermore, the connections between clusters highlight 

bridging individuals (e.g., ego users) or relationships, which act as connectors between different  

communities. These individuals are often influential in information dissemination across the 

network.

In this context, it is also interesting to investigate whether the ego users occupy some roles inside 

the detected communities. Let’s enhance the size and color of the ego user nodes, as follows:

for node in ego_nodes:

   n_sizes[node] = 250

nodes = nx.draw_networkx_nodes(G,spring_pos,ego_nodes,node_color=[parts.
get(node) for node in ego_nodes])

nodes.set_edgecolor(enhanced_node_color)
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The output should be as follows:

Figure 7.6: Detected communities using networkx with ego user’s node size enhanced

The output highlights ego users as larger, distinctively colored nodes within their respective  

communities, making them easily identifiable. It is interesting to notice that some ego users 

belong to the same community. It is possible that ego users are actual friends on Facebook, and 

therefore their ego networks are partially shared. It is also interesting to notice that a few of 

the high betweenness nodes are not ego nodes and, conversely, some ego nodes are not high  

betweenness. This occurs because high-betweenness nodes act as connectors between  

communities, while ego nodes may be deeply embedded within their groups. Thus, structural 

importance and ego selection criteria are not always aligned.

We have now completed our basic understanding of the graph structure. We now know that 

some important nodes can be identified inside the network. We have also seen the presence 

of well-defined communities to which those nodes belong. Keep in mind these observations 

while performing the next part of the analysis, which is applying machine learning methods for  

supervised and unsupervised tasks.

Embedding for supervised and unsupervised tasks
Social media nowadays represent one of the most interesting and rich sources of information. 

Every day, thousands of new connections arise, new users join the communities, and billions of 

posts are shared. Graphs mathematically represent all those interactions, helping to make order 

in all such spontaneous and unstructured traffic.
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When dealing with social graphs, there are many interesting problems that can be addressed  

using machine learning. Under the correct settings, it is possible to extract useful insight from this 

huge amount of data for improving your marketing strategy, identifying users with dangerous 

behaviors (for example, terrorist networks), and predicting the likelihood that a user will read 

your new post.

Specifically, link prediction is one of the most interesting and important research topics in this 

field. Depending on what a connection in your social graph represents, by predicting future  

edges, you will be able to predict your next suggested friend, the next suggested movie, and which 

product you are likely to buy.

As we have already seen in Chapter 6, Solving Common Graph-Based Machine Learning Problems, 

the link prediction task aims at forecasting the likelihood of a future connection between two 

nodes, and it can be solved using several machine learning algorithms.

In the next examples, we will be applying machine learning supervised and unsupervised graph 

embedding algorithms for predicting future connections on the SNAP Facebook social graph. 

Furthermore, we will evaluate the contribution of node features in the prediction task.

Task preparation
In order to perform the link prediction task, it is necessary to prepare our dataset. The problem 

will be treated as a supervised task. Pairs of nodes will be provided to each algorithm as input, 

while the target will be binary, that is, connected if the two nodes are actually connected in the 

network and not connected otherwise.

Since we aim to cast this problem as a supervised learning task, we need to create a training and 

testing dataset. We will, therefore, create two new subgraphs that have the same number of nodes 

but different numbers of edges (as some edges will be removed and treated as positive samples 

for training/testing the algorithm).

The stellargraph library provides a useful tool for splitting the data and creating training and 

test reduced subgraphs. This process is similar to the one we have already seen in Chapter 6,  

Solving Common Graph-Based Machine Learning Problems:

from sklearn.model_selection import train_test_split

from stellargraph.data import EdgeSplitter

from stellargraph import StellarGraph

edgeSplitter = EdgeSplitter(G)

graph_test, samples_test, labels_test = edgeSplitter.train_test_
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split(p=0.1, method="global", seed=24)

edgeSplitter = EdgeSplitter(graph_test, G)

graph_train, samples_train, labels_train = edgeSplitter.train_test_
split(p=0.1, method="global", seed=24)

We are using the EdgeSplitter class to extract a fraction (p=10%) of all the edges in G, as well as 

the same number of negative edges, in order to obtain a reduced graph, graph_test. The train_

test_split method also returns a list of node pairs, samples_test (where each pair corresponds 

to an existing or not-existing edge in the graph), and a list of binary targets (labels_test) of the 

same length of the samples_test list. Then, from such a reduced graph, we repeat the operation 

to obtain another reduced graph, graph_train, as well as the corresponding samples_train and 

labels_train lists.

We will be comparing three different methods for predicting missing edges:

•	 Method1: node2vec will be used to learn a node embedding without supervision. The 

learned embedding will be used as input for a supervised classification algorithm to 

determine whether the input pair is actually connected.

•	 Method2: The graph neural network-based algorithm GraphSAGE will be used to jointly 

learn the embedding and perform the classification task.

•	 Method3: Hand-crafted features will be extracted from the graph and used as inputs for 

a supervised classifier, together with the nodes’ IDs.

Let’s analyze them in more detail.

Node2Vec-based link prediction
The proposed method involves several steps:

1.	 We use node2vec to generate node embeddings without supervision from the training 

graph. This can be done using the node2vec Python implementation, as we have already 

seen in Chapter 6, Solving Common Graph-Based Machine Learning Problems:

from node2vec import Node2Vec

node2vec = Node2Vec(graph_train)

model = node2vec.fit()

2.	 Then, we use HadamardEmbedder to generate an embedding for each pair of embedded 

nodes. Such feature vectors will be used as input to train the classifier:
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from node2vec.edges import HadamardEmbedder

edges_embs = HadamardEmbedder(keyed_vectors=model.wv)

train_embeddings = [edges_embs[str(x[0]),str(x[1])] for x in 
samples_train]

It’s time to train our supervised classifier. We will be using the RandomForest classifier, 

a powerful decision tree-based ensemble algorithm:

from sklearn.ensemble import RandomForestClassifier

from sklearn import metrics

rf = RandomForestClassifier(n_estimators=10)

rf.fit(train_embeddings, labels_train);

Finally, let’s apply the trained model for creating the embedding of the test set:

edges_embs = HadamardEmbedder(keyed_vectors=model.wv) test_
embeddings = [edges_embs[str(x[0]),str(x[1])] for x in samples_test]

3.	 Now we are ready to perform the prediction on the test set using our trained model:

y_pred = rf.predict(test_embeddings)

print('Precision:', metrics.precision_score(labels_test, y_pred))

print('Recall:', metrics.recall_score(labels_test, y_pred))

print('F1-Score:', metrics.f1_score(labels_test, y_pred))

4.	 The output should be as follows:

Precision: 0.9701333333333333

Recall: 0.9162573983125551

F1-Score: 0.9424260086781945

Not bad at all! We can observe that the node2vec-based embedding already provides a powerful 

representation for actually predicting links on the combined Facebook ego network.

GraphSAGE-based link prediction
Next, we will use GraphSAGE to learn node embeddings and classify edges. More specifically, 

we will build a two-layer GraphSAGE architecture that, given labeled pairs of nodes, outputs a 

pair of node embeddings. Then, a fully connected neural network will be used to process these  

embeddings and produce link predictions. Notice that the GraphSAGE model and the fully  

connected network will be concatenated and trained from end to end so that the embedding 

learning stage is influenced by the predictions.
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A similar example using PyTorch is also available in the GitHub repository (https://github.com/

PacktPublishing/Graph-Machine-Learning/blob/main/Chapter07) repository for interested 

readers.

Featureless approach
Before starting, you may recall from Chapter 4, Unsupervised Graph Learning, and Chapter 5,  

Supervised Graph Learning, that GraphSAGE needs node descriptors (features). Such features may 

or may not be available in your dataset. Let’s begin our analysis by not considering available node 

features. In this case, a common approach is to assign to each node a one-hot feature vector of 

length |V| (the number of nodes in the graph), where only the cell corresponding to the given 

node is 1, while the remaining cells are 0.

This can be done in Python and networkx as follows:

eye = np.eye(graph_train.number_of_nodes())

fake_features = {n:eye[n] for n in G.nodes()}

nx.set_node_attributes(graph_train, fake_features, "fake")

eye = np.eye(graph_test.number_of_nodes())

fake_features = {n:eye[n] for n in G.nodes()}

nx.set_node_attributes(graph_test, fake_features, "fake")

In the preceding code snippet, we did the following:

1.	 Created an identity matrix of size |V|. Each row of the matrix is the one-hot vector we 

need for each node in the graph.

2.	 Then, we create a Python dictionary where, for each nodeID (used as the key), we assign 

the corresponding row of the above-created identity matrix.

3.	 Finally, the dictionary is passed to the networkx function set_node_attributes to assign 

the “fake” features to each node in the networkx graph.

Notice that the process is repeated for both training and test graphs.

The next step will be defining the generator that will be used to feed the model. We will be using 

the stellargraph GraphSAGELinkGenerator for this, which essentially provides the model with 

pairs of nodes as input:

from stellargraph.mapper import GraphSAGELinkGenerator

batch_size = 64

num_samples = [4, 4]

# convert graph_train and graph_test for stellargraph

https://github.com/PacktPublishing/Graph-Machine-Learning/blob/main/Chapter07
https://github.com/PacktPublishing/Graph-Machine-Learning/blob/main/Chapter07
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sg_graph_train = StellarGraph.from_networkx(graph_train, node_
features="fake")

sg_graph_test = StellarGraph.from_networkx(graph_test, node_
features="fake")

train_gen = GraphSAGELinkGenerator(sg_graph_train, batch_size, num_
samples)

train_flow = train_gen.flow(samples_train, labels_train, shuffle=True, 
seed=24)

test_gen = GraphSAGELinkGenerator(sg_graph_test, batch_size, num_samples)

test_flow = test_gen.flow(samples_test, labels_test, seed=24)

Note that we also need to define the batch_size (number of inputs per minibatch) and the number 

of first- and second-hop neighbor samples that GraphSAGE should consider.

Finally, we are ready to create the model:

from stellargraph.layer import GraphSAGE, link_classification

from tensorflow import keras

layer_sizes = [20, 20]

graphsage = GraphSAGE(layer_sizes=layer_sizes, generator=train_gen, 
bias=True, dropout=0.3)

x_inp, x_out = graphsage.in_out_tensors()

# define the link classifier

prediction = link_classification(output_dim=1, output_act="sigmoid", edge_
embedding_method="ip")(x_out)

model = keras.Model(inputs=x_inp, outputs=prediction)

model.compile(

    optimizer=keras.optimizers.Adam(lr=1e-3),

    loss=keras.losses.mse,

    metrics=["acc"],

)

In the preceding snippet, we are creating a GraphSAGE model with two hidden layers of size 

20, each with a bias term and a dropout layer for reducing overfitting. Then, the output of the 

GraphSAGE part of the module is concatenated with a link_classification layer that takes 

pairs of node embeddings (output of GraphSAGE), uses binary operators (inner product – ip – in 

our case) to produce edge embeddings, and finally passes them through a fully connected neural 

network for classification.

The model is optimized via the Adam optimizer (learning rate=1e-3) using the mean squared 

error as a loss function.
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Let’s train the model for 20 epochs:

epochs = 20

history = model.fit(train_flow, epochs=epochs, validation_data=test_flow)

The tail of the output should be as follows:

Epoch 18/20

loss: 0.4921 - acc: 0.8476 - val_loss: 0.5251 - val_acc: 0.7884

Epoch 19/20

loss: 0.4935 - acc: 0.8446 - val_loss: 0.5247 - val_acc: 0.7922

Epoch 20/20

loss: 0.4922 - acc: 0.8476 - val_loss: 0.5242 - val_acc: 0.7913

As you can see, in the final epochs (18–20), the loss and accuracy values stabilize, suggesting the 

model has mostly converged. The validation metrics (val_loss and val_acc) are close to the 

training metrics, indicating that the model generalizes well and is not overfitting. Let’s compute 

the performance metrics over the test set:

from sklearn import metrics

y_pred = np.round(model.predict(train_flow)).flatten()

print('Precision:', metrics.precision_score(labels_train, y_pred))

print('Recall:', metrics.recall_score(labels_train, y_pred))

print('F1-Score:', metrics.f1_score(labels_train, y_pred))

The output should be as follows:

Precision: 0.7156476303969199

Recall: 0.983125550938169

F1-Score: 0.8283289124668435

As we can observe, performances are lower than the ones obtained in the node2vec-based  

approach. A possible reason may be attributed to the particular global structure of the social 

network: the dataset used here likely benefits from the global structural relationships captured by 

node2vec. Node2vec relies on the relationships captured through random walks, which emphasize 

connections between nodes that may not be directly adjacent but share a broader context in the 

network, while the featureless GraphSAGE relies on aggregating information from immediate 

neighbors. Without informative node features, this “local” approach may not fully capture the 

relationships present in the network defined by, for example, common interests. For this reason, 

real node features may represent a great source of information and we may want to use it. Let’s 

do that in the following test.
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In this example, node2vec performs better than the featureless GraphSAGE. However, this may 

not be the case for other scenarios. The featureless GraphSAGE excels in scenarios dominated by 

local interactions, such as citation or community-based networks with strong localized patterns, 

and may be particularly effective when small, connected clusters or highly predictive immediate 

neighbors are present.

Introducing node features
The process of extracting node features for the combined ego network is quite verbose. This is 

because, as we explained in the first part of the chapter, each ego network is described using  

several files, as well as all the feature names and values. We have written useful functions for  

parsing all the ego networks in order to extract the node features. You can find their  

implementation in the Python notebook supplied with this book. Here, let’s just briefly  

summarize how they work:

1.	 The load_features function parses each ego network and creates two dictionaries:

a.	 feature_index, which maps numeric indices to feature names

b.	 inverted_feature_indexes, which maps names to numeric indices

2.	 The parse_nodes function receives the combined ego network G and the ego node IDs. 

Then, each ego node in the network is assigned the corresponding features previously 

loaded using the load_features function.

Let’s invoke them in order to load a feature vector for each node in the combined ego network:

load_features()

parse_nodes(G, ego_nodes)

We can easily check the result by printing the information of one node in the network (e.g., the 

node with ID 0):

print(G.nodes[0])

The output should be as follows:

{'features': array([1., 1., 1., ..., 0., 0., 0.])}

As we can observe, the node has a dictionary containing a key named features. The corresponding 

value is the feature vector assigned to this node.
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We are now ready to repeat the same steps used before for training the GraphSAGE model, this 

time using features as the key when converting the networkx graph to the stellargraph format:

sg_graph_train = StellarGraph.from_networkx(graph_train, node_
features="features")

sg_graph_test = StellarGraph.from_networkx(graph_test, node_
features="features")

Finally, as we have done before, we create the generators, compile the model, and train it for 20 

epochs:

train_gen = GraphSAGELinkGenerator(sg_graph_train, batch_size, num_samples)

train_flow = train_gen.flow(samples_train, labels_train, shuffle=True, 
seed=24)

test_gen = GraphSAGELinkGenerator(sg_graph_test, batch_size, num_samples)

test_flow = test_gen.flow(samples_test, labels_test, seed=24)

layer_sizes = [20, 20]

graphsage = GraphSAGE(layer_sizes=layer_sizes, generator=train_gen, 
bias=True, dropout=0.3)

x_inp, x_out = graphsage.in_out_tensors()

prediction = link_classification(output_dim=1, output_act="sigmoid", edge_
embedding_method="ip")(x_out)

model = keras.Model(inputs=x_inp, outputs=prediction)

model.compile(

    optimizer=keras.optimizers.Adam(lr=1e-3),

    loss=keras.losses.mse,

    metrics=["acc"],

)

epochs = 20

history = model.fit(train_flow, epochs=epochs, validation_data=test_flow)

Notice that we are using the same hyperparameters (including the number of layers, batch size, 

and learning rate) as well as the random seed, to ensure a fair comparison between the models.

The tail of the output should be as follows:

Epoch 18/20

loss: 0.1337 - acc: 0.9564 - val_loss: 0.1872 - val_acc: 0.9387

Epoch 19/20
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loss: 0.1324 - acc: 0.9560 - val_loss: 0.1880 - val_acc: 0.9340

Epoch 20/20

loss: 0.1310 - acc: 0.9585 - val_loss: 0.1869 - val_acc: 0.9365

Let’s evaluate the model performance:

from sklearn import metrics

y_pred = np.round(model.predict(train_flow)).flatten()

print('Precision:', metrics.precision_score(labels_train, y_pred))

print('Recall:', metrics.recall_score(labels_train, y_pred))

print('F1-Score:', metrics.f1_score(labels_train, y_pred))

We’ll check the output:

Precision: 0.7895418326693228

Recall: 0.9982369978592117

F1-Score: 0.8817084700517213

As we can notice, the introduction of real node features has brought a good improvement, even 

if the best performances are still the ones achieved using the node2vec approach. This can be 

attributed to the effectiveness of capturing global structural patterns, which seems to be highly 

advantageous for this social network dataset and more informative than individual node features, 

according to the observed results. Such global patterns may include relationships between nodes 

that do not share direct edges but are closely connected within the graph’s topology, relationships 

that the random walks employed by node2vec likely enhance in their identification.

Finally, we will evaluate a shallow embedding approach where hand-crafted features will be used 

for training a supervised classifier.

Hand-crafted features for link prediction
As we have already seen in Chapter 5, Supervised Graph Learning, shallow embedding methods 

represent a simple yet powerful approach for dealing with supervised tasks. Basically, for each 

input edge, we will compute a set of metrics that will be given as input to a classifier.

In this example, for each input edge represented as a pair of nodes (u,v), four metrics will be 

considered, namely:

•	 Shortest path: The length of the shortest path between u and v. If u and v are directly 

connected through an edge, this edge will be removed before computing the shortest 

path. The value 0 will be used if u is not reachable from v.
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•	 Jaccard coefficient: Given a pair of nodes (u,v), it is defined as the intersection over a 

union of the set of neighbors of u and v. Formally, let 𝑠𝑠(𝑢𝑢) be the set of neighbors of the 

node u and 𝑠𝑠(𝑣𝑣) be the set of neighbors of the node v:𝑗𝑗(𝑢𝑢𝑢 𝑢𝑢) =  𝑠𝑠(𝑢𝑢) ∩𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢) ∪𝑠𝑠𝑠𝑠𝑠𝑠
•	 Centrality: The degree centrality computed for the nodes v and u.

•	 u community: The community ID assigned to the nodes u and v using the Louvain heuristic.

We have written a useful function for computing these metrics using Python and networkx. You 

can find the implementation in the Python notebook attached to this book.

Let’s compute the features for each edge in the training and test sets:

feat_train = get_hc_features(graph_train, samples_train, labels_train)

feat_test = get_hc_features(graph_test, samples_test, labels_test)

In the proposed shallow approach, these features will be directly used as input for a Random 

Forest classifier. We will use its scikit-learn implementation as follows:

from sklearn.ensemble import RandomForestClassifier

from sklearn import metrics

rf = RandomForestClassifier(n_estimators=10)

rf.fit(feat_train, labels_train);

The above lines automatically instantiate and train a Random Forest classifier using the edge 

features we have computed before. We are now ready to compute the performance as follows:

y_pred = rf.predict(feat_test)

print('Precision:', metrics.precision_score(labels_test, y_pred))

print('Recall:', metrics.recall_score(labels_test, y_pred))

print('F1-Score:', metrics.f1_score(labels_test, y_pred))

The output will be:

Precision: 0.9636952636282395

Recall: 0.9777853337866939

F1-Score: 0.9706891701828411

Surprisingly, the shallow method based on hand-crafted features performs better than the others. 

This result can be attributed to the high expressiveness of the hand-crafted metrics used in this 

specific dataset. 
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Metrics such as the shortest path, Jaccard coefficient, centrality, and community information 

directly capture structural properties of the graph that are particularly predictive for link  

prediction tasks. Additionally, the Random Forest classifier used in the shallow method may 

have better exploited these engineered features compared to the more generalized embeddings 

generated by node2vec and GraphSAGE. However, it is important to note that this observation 

is dataset-dependent and may not hold true in all cases. The shallow method relies heavily 

on the quality of the hand-crafted features, which may not always capture all relevant graph 

properties for more complex or large-scale datasets. In contrast, methods like node2vec and 

GraphSAGE are designed to generalize across diverse graph structures by learning feature rep-

resentations directly from the data. These methods often outperform shallow approaches in 

scenarios where the graph is too complex for simple metrics to capture all predictive patterns.

Summarizing the results
In the above examples, we have trained three algorithms in learning, with and without super-

vision, useful embeddings for link prediction. In the following table, we summarize the results:

Table 7.1: Summary of the results achieved for the link prediction task

As shown in Table 7.1, the node2vec-based method is already able to achieve a high level of  

performance without supervision or per-node information. As mentioned earlier, such high  

results might be related to the particular structure of the combined ego network. Due to the high 

sub-modularity of the network (since it is composed of several ego networks), predicting whether 

two users will be connected or not might be highly related to the way the two candidate nodes 

are connected inside the network. For example, there might be a systematic situation in which 

two users, both connected to several users in the same ego network, have a high chance of being 

connected as well. On the other hand, two users belonging to different ego networks, or very far 

from each other, are likely to be not connected, making the prediction task easier. This is also 

confirmed by the high results achieved using the shallow method.
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Such a situation might be confusing, instead, for more complicated algorithms like GraphSAGE, 

especially when node features are involved. For example, two users might share similar  

interests, making them very similar. However, they might belong to different ego networks, 

where the corresponding ego users live in two very different parts of the world. So, similar  

users that in principle should be connected are not. However, it is also possible that such  

algorithms are predicting something further in the future. Recall that the combined ego 

network is a timestamp of a particular situation in a given period of time. Who knows how it 

might have evolved now!

Interpreting machine learning algorithms is probably the most interesting challenge of machine 

learning itself. For this reason, we should always interpret results with care. Our suggestion is 

always to dig into the dataset and try to give an explanation of your results.

Finally, it is important to remark that each of the algorithms was not tuned for the purpose of 

this demonstration. Different results can be obtained by properly tuning each hyperparameter 

and we highly suggest you try to do it.

Notice that, in this example, we did not apply any particular feature processing method. However, 

in other scenarios, we may want to perform feature engineering to improve performances. Skewed 

data may benefit from transformations, and highly correlated features, though not harmful, could 

be pruned for efficiency. Addressing outliers enhances model robustness, and dimensionality 

reduction prevents issues with overly high-dimensional data.

Summary
In this chapter, we have seen how machine learning can be useful for solving practical machine 

learning tasks on social network graphs. More specifically, we have seen how future connections 

can be predicted on the SNAP Facebook combined ego network.

We reviewed graph analysis concepts and used graph-derived metrics to collect insights into the 

social graph. Then, we benchmarked several machine learning algorithms on the link prediction 

task, evaluating their performance and trying to give them an interpretation.

In the next chapter, we will focus on how similar approaches can be used to analyze a corpus of 

documents, using text analytics and natural language processing.



8
Text Analytics and Natural 
Language Processing Using 
Graphs

Nowadays, a vast amount of information is available in the form of text in natural written  

language. The very book you are reading right now is one such example. The news you read  

every morning, the messages or Facebook posts you send or read, the reports you write 

for school assignments, and the emails you write are all examples of information that is  

exchanged via written documents and text. It is undoubtedly the most common way of  

indirect interaction, as opposed to direct interaction, such as talking or gesticulating. It 

is, therefore, crucial to utilize this kind of information and extract insights from documents 

and texts. This abundance of textual information has driven significant advancements in 

natural language processing (NLP). One notable development is ChatGPT, which provides  

sophisticated conversational capabilities. However, like many other NLP algorithms, ChatGPT 

is not natively designed to exploit inherent relationships and structures present in text data.  

As we are learning throughout this book, indeed, such relationships are everywhere and, if 

properly leveraged, can significantly benefit machine learning. For example, graphs can  

represent connections between entities, dependencies in sentences, or semantic  

relationships across documents. By integrating graphs into NLP workflows, we can enhance tasks 

such as information retrieval, question answering, and recommendation systems. Moreover,  

graph-based methods often improve the explainability and robustness of models, offering  

insights into the underlying relationships that would otherwise be overlooked by traditional 

NLP approaches.
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In this chapter, we will show you how to process natural language texts and review some basic 

models that allow structuring text information. Using the information extracted from a corpus 

of documents, we will show you how to create networks that can be analyzed using some of the 

techniques we have seen in previous chapters. In particular, using a tagged corpus, we will show 

you how to develop both semi-supervised (classification models to classify documents in pre- 

determined topics) and unsupervised (community detection to discover new topics) algorithms.

The chapter is organized as follows:

•	 Providing a quick overview of a dataset – the Reuters-21578 dataset

•	 Understanding the main concepts and tools used in NLP

•	 Creating graphs from a corpus of documents

•	 Building a document topic classifier

Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter08. Please refer to the Practical exercises section in 

Chapter 1, Getting Started with Graphs, for guidance on how to set up the environment to run the 

examples in this chapter, using either Poetry, pip, or Docker.

Providing a quick overview of a dataset
In order to show you how to process a corpus of documents with the aim of extracting relevant 

information, we will be using a dataset derived from a well-known benchmark in the field of  

NLP: the so-called Reuters-21578 dataset. The original dataset includes a set of 21,578 news  

articles published in the Reuters financial newswire in 1987, which were assembled and indexed in  

categories. The original dataset has a very skewed distribution, with some categories  

appearing in only the training set or the test set. For this reason, we use a modified version named  

ApteMod, also referred to as Reuters-21578 Distribution 1.0, which has a lesser skew distribution 

and consistent labels between training and test datasets.

Despite the fact that the news articles in the Reuters financial newswire are a bit outdated, the 

dataset has been used in a plethora of papers on NLP and still represents a dataset often used 

for benchmarking algorithms. Nevertheless, the Reuters-21578 dataset is much smaller in 

size in comparison to other datasets available today, which can comprise millions or billions of  

documents. Hence, if you wish to scale your application and analysis, using a dataset with a 

larger number of documents is advisable (see, for instance, https://github.com/niderhoff/

nlp-datasets for an overview of the most common ones). 

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter08
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter08
https://github.com/niderhoff/nlp-datasets
https://github.com/niderhoff/nlp-datasets
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It is important to note that these may require larger storage and computational power to allow 

their processing. In Chapter 10, Building a Data-Driven Graph-Powered Application, we will show 

you some of the tools and libraries that can help you scale your analysis.

Let’s overview the dataset: each document of the Reuters-21578 dataset is provided with a set 

of labels that represent its content and make it a perfect benchmark for testing both supervised 

and unsupervised algorithms. The Reuters-21578 dataset can be easily download using the nltk 

library (which is a very useful library for post-processing documents):

from nltk.corpus import reuters

corpus = pd.DataFrame([

    {"id": _id,

     "text": reuters.raw(_id).replace("\n", ""),

     "label": reuters.categories(_id)}

    for _id in reuters.fields()

])

As you will see by inspecting the DataFrame corpus, the IDs have the form training/{ID} 

and test/{ID}, making it clear which documents should be used for training and which for  

testing. To start with, let us list all the topics and see the number of documents per topic using the  

following code:

from collections import Counter

Counter([label for document_labels in corpus["label"] for label in 
document_labels]).most_common()

The Reuters-21578 dataset includes 90 different topics with a significant degree of unbalance 

between classes, with almost 37% of the documents in the most common category and only 0.01% 

in each of the five least common categories. As you can see from inspecting the text, some of the 

documents have some new-line characters embedded. These artifacts are common in raw text 

data and can interfere with text processing tasks, such as tokenization, which is a fundamental 

step in most NLP pipelines (as we will see later). If not removed, such artifacts can lead to tokeni-

zation errors, where words or phrases are incorrectly split, resulting in noisy or inconsistent data 

representations. This can degrade the performance of downstream NLP algorithms. To address 

this issue, we can easily clean the text by removing newline characters during the preprocessing 

stage, as follows:

corpus["clean_text"] = corpus["text"].apply(

    lambda x: x.replace("\n", "")

)
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Now that we have loaded the data in memory, we can start analyzing it. In the next section, we 

will show you some of the main tools that can be used when dealing with unstructured text data 

to extract structured information that can be more easily used.

Understanding the main concepts and tools used in 
NLP
When processing documents, the first analytical step is certainly to infer the document  

language. Most analytical engines used in NLP tasks are in fact trained on documents that have a 

specific language and should only be used for such a language. Although attempts to build cross- 

language models (see, for instance, multi-lingual embeddings such as https://fasttext.cc/

docs/en/aligned-vectors.html and https://github.com/google-research/bert/blob/

master/multilingual.md) have recently gained increasing popularity, these models face  

challenges, such as lower performance compared to language-specific models and difficulty in 

handling languages with sparse training data or significantly different syntax and grammatical 

structures. For these reasons, they still represent a small portion of NLP models. It is, therefore, 

very common to first infer the language to use the correct downstream analytical NLP pipeline.

In order to infer the language, different methods can be used. One very simple yet effective  

approach relies on looking for the most common words of a language (so-called stopwords) and 

building a score based on their frequencies. Its precision, however, tends to be limited for short text 

and does not make use of the word positioning and context. On the other hand, Python has many 

libraries that, using more elaborate logic, allow inferring the language in a more precise manner. 

Some examples of these libraries are fasttext, polyglot, and langdetect, to name just a few.

As an example, we will use langdetect in the following code example, which can be integrated 

with very few lines and provides support for more than 150 languages. The language can be  

inferred for all documents using the following snippet:

from langdetect import detect

import numpy as np

def getLanguage(text: str):

    try:

        return langdetect.detect(text)

    except:

        return np.nan

corpus["language"] = corpus["text"].apply(langdetect.detect)

https://fasttext.cc/docs/en/aligned-vectors.html
https://fasttext.cc/docs/en/aligned-vectors.html
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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As you will see in the output, there seem to be documents in languages other than English. Indeed, 

these documents often are either very short or have a strange structure that does not seem to be 

actual news. When documents represent text that a human would read and label as news, the 

model is generally rather precise and accurate.

Now that we have inferred the language, we can continue with the language-dependent steps 

of the analytical pipeline. Documents in languages other than English will now be filtered 

out, as these are indeed a very small part of the dataset (also given that the dataset is built by  

documents in English and that, for the sake of simplicity, the models that we are going to use in 

this example are specific to English text). Of course, should the number of non-English documents 

be larger and more significant, and dropping them were not an option, you could either first  

translate the non-English documents into English using appropriate text-to-text translation 

models (like Google Translate) or split the analytical pipeline into multiple sub-pipelines  

depending on the document language. 

For the following tasks, we will be using spacy, which is an extremely powerful library that allows 

us to embed state-of-the- art NLP models with very few lines of code. After installing the library 

with pip install spacy, language-specific models can be integrated by simply installing them 

using the spacy download utility. For instance, the following command can be used in order to 

download and install the English model:

python -m spacy download en_core_web_sm

Now we should have the language models in English ready to use. Let’s then see which  

information it can provide to us. Using spacy is extremely simple; in just one line of embedded 

code, a very rich set of information can be embedded. Let us start by applying the model to one 

of the documents in the Reuters corpus, presented in the following callout box:

 SUBROTO SAYS INDONESIA SUPPORTS TIN PACT EXTENSION

Mines and Energy Minister Subroto confirmed Indonesian support for an  

extension of the sixth International Tin Agreement (ITA), but said a new pact 

was not necessary. Asked by Reuters to clarify his statement on Monday in which 

he said the pact should be allowed to lapse, Subroto said Indonesia was ready 

to back extension of the ITA. “We can support extension of the sixth agreement,” 

he said. “But a seventh accord we believe to be unnecessary.” The sixth ITA will 

expire at the end of June unless a two-thirds majority of members vote for an 

extension.
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spacy can be easily applied by just loading the model and applying it to the text:

nlp = spacy.load('en_core_web_md')

parsed = nlp(text)

The object parsed, returned by spacy, has several fields that result from the application of many 

models that are combined into a single pipeline. These provide a different level of text structuring 

that we will examine one by one:

•	 Text segmentation and tokenization, which is the process aimed at splitting a  
document into its periods, sentences, and single words (or tokens). This step is generally very  
important for all subsequent analyses and it usually uses punctuation, blank-spaces, and 
new lines, in order to infer the best document segmentation. The segmentation engine 
provided in spacy generally works fairly well. However, please note that depending on 
the context, a bit of model tuning or rule modification might be necessary. For instance, 
when dealing with short texts that have slang, emoticons, links, and hashtags, a better 
choice for text segmentation and tokenization may be the TweetTokenizer included in 
the nltk library. Depending on the context, we encourage you to explore other possible 

segmentations available.

In the document returned by spacy, the segmentation in sentences can be found in the 

sents attribute of the parsed object. Each sentence can be iterated over its token by  

simply using:

for sent in parsed.sents:
    for token in sent:
        print(token)

Each token is a spacy Span object that has attributes that specify the type of token and 

further characterization that is introduced by the other models.

•	 Part-of-speech tagging. Once the text has been divided into its single words (also referred 
to as tokens), the next step is to associate each token to a part-of-speech (PoS) tag, that 
is to say, its grammatical type. The inferred tags are usually nouns, verbs, auxiliary verbs, 
adjectives, and so on. The engines used for PoS tagging are usually models that are trained 
to classify tokens based on a large, labeled corpus, where each token has an associated 
PoS tag. Being trained on actual data, they learn to recognize common patterns within a 
language, for instance, the word “the” (which is a determinative article (DET) is usually 
followed by a noun, and so on. When using spacy, the information about the PoS tagging 
is usually stored in the label_ attribute of the Span object. The types of tags available can 
be found at https://spacy.io/models/en. Conversely, you can get a human-readable 

value for a given type using the function spacy.explain.

https://spacy.io/models/en
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•	 Named entity recognition. This analytical step is generally a statistical model that is 

trained to recognize the type of nouns that appear within the text. Some common examples 

of entities are organization, person, geographic location and addresses, products, numbers, 

and currencies. Given the context (the surrounding words) as well as the prepositions that 

are used, the model infers the most probable type of the entity, if any. As in other steps of 

the NLP pipeline, these models are also usually trained using a large, tagged dataset on 

which they learn common patterns and structure. In spacy, the information about the 

document entities is usually stored in the ents attribute of the parsed object. spacy also 

provides some utilities to nicely visualize the entities in a text, using the displacy module:

displacy.render(parsed, style='ent', jupyter=True)

This gives the following output:

Figure 8.1: Example of the spacy output for the named entity recognition engine

•	 Dependency parsing. The dependency parser is an extremely powerful engine that  

infers the relationships between tokens within a sentence. It basically allows you to build 

a syntactic tree of how words are related to each other. Let’s, for instance, take a simple 

example taken from the spacy website: Autonomous cars shift insurance liability towards 

manufacturers.

Figure 8.2 shows the dependency tree, where it can be seen that the main verb (or root) 

“shift” is related by the subject-object relationship to “cars” (subject) and “liability”  

(object). It also sustains the preposition “towards.” In the same way, the remaining 

nouns/adjectives “Autonomous,” “insurance,” and “manufacturers” are related to ei-

ther the subject, the object, or the preposition. Thus, spacy can be used to build a syn-

tactic tree that can be navigated in order to identify relationships between the tokens:
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Figure 8.2: Example of a syntactic dependency tree provided by spacy

As we will see in the following section, this information can be crucial when building 

knowledge graphs.

•	 Lemmatization or stemming. Finally, the very last step of the analytical pipeline is aimed 

at reducing words to a common root to provide a cleaner version, and limiting the mor-

phological variation of words. Take, for instance, the verb to be. It can have many morpho-

logical variations, such as “is,” “are,” “was,” etc. which are all different valid forms. Or also 

consider the difference between “car” and “cars.” In most cases, we are not interested in 

these small differences introduced by morphology. The lemmatizers and stemmers help 

to reduce tokens to a common, stable form that can be more easily processed. Usually, the 

lemmatizer is based on a set of rules that associate particular words (with conjugation, 

plurals, and inflection) to a common root form. More elaborate implementations may 

also use the context and the PoS tagging information in order to be more robust against 

homonyms. On the other hand, stemmers are generally simpler, and instead of associat-

ing words to a common root form, they usually remove the last part of the word to deal 

with inflectional and derivational variance. Also, stemmers are generally based on a set of 

rules that remove a certain pattern, rather than taking into account lexica and syntactic 

information or using extensive vocabulary mappings. In spacy, the lemmatized version 

of a token can be found in the Span object via the lemma_ attribute.

As shown below, spacy pipelines can be easily integrated in order to process the entire corpus 

and store the results in our corpus DataFrame:

nlp = spacy.load('en_core_web_md')

sample_corpus["parsed"] = sample_corpus["clean_text"]\

    .apply(nlp)

This DataFrame represents the structured information of the documents that will be the base 

of all our subsequent analysis. In particular, in the next section we will show you how to build 

graphs starting from such information.
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Creating graphs from a corpus of documents
In this section, we will use the information extracted in the previous section using the different 

text engines to build networks that relate the different information. In particular, we will focus 

on two kinds of graphs:

•	 Knowledge-based graphs, where we will use the semantic meaning of sentences to infer 

relationships between the different entities.

•	 Bipartite graphs, connecting the documents with the entities appearing in the text. We 

will then project the bipartite graph into a homogeneous graph, which might be made 

of either document or entity nodes only.

Knowledge graphs
A knowledge graph is a structured representation of entities, their attributes, and relationships, 

organized as a graph. It encodes semantic relationships to enable reasoning, querying, and  

knowledge discovery. It is commonly used in AI and machine learning to power applications like 

recommendation systems, natural language understanding, and data integration. Knowledge 

graphs are very interesting as they not only relate entities but also provide direction and meaning 

to the relationship. For instance, take the following relationship:

                                                                     I - buy -> book

It is substantially different from the following relationship:

                                                                     I - sell -> book

Besides the kind of relationship (buying or selling), it is also important to have a direction, where 

the subject and object are not treated symmetrically, but there is a difference between who is 

performing the action and who is the target of such an action.

In order to create a knowledge graph, we, therefore, need a function that is able to identify for 

each sentence the subject–verb–object (SVO) triplet. This function can then be applied to all 

sentences in the corpus and all the triplets can be aggregated to generate the corresponding graph.

The SVO extractor can be implemented on top of the enrichment provided by spacy models.  

Indeed, the tagging provided by the dependency tree parser can be very helpful to separate main 

sentences and their subordinates, as well as identifying the SOV triplets. The business logic may 

need to consider a few special cases (such as conjunctions, negations, and preposition handling) 

but this can be encoded with a set of rules. Moreover, these rules may also change depending on 

the specific use case, with slight variations to be tuned by the user. 
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A base implementation of such rules can be found in https://github.com/NSchrading/intro-

spacy-nlp/blob/master/subject_object_extraction.py, which has been slightly adopted for 

our scope and is included in the GitHub repo provided with this book. Using this helper function, 

we compute all triplets in the corpus and store them in our corpus DataFrame:

from subject_object_extraction import findSVOs

corpus["triplets"] = corpus["parsed"].apply(

    lambda x: findSVOs(x, output="obj")

)

edge_list = pd.DataFrame([

    {

        "id": _id,

        "source": source.lemma_.lower(),

        "target": target.lemma_.lower(),

        "edge": edge.lemma_.lower()

    }

    for _id, triplets in corpus["triplets"].iteritems()

    for (source, (edge, neg), target) in triplets

    # Add stopword filtering

    if not any([source.is_stop, target.is_stop])

    # Add filtering based on PoS tagging

    if (source.pos_ == "PROPN" or source.pos_ == "NOUN")

       and (target.pos_== "PROPN" or target.pos_== "NOUN")

])

Note that we have also added stopwords filtering and retention of sources/targets that are nouns 

(or proper nouns) to only represent relevant edges. Moreover, we reduce the morphological  

variations of the words using lemmatization.

The type of connection (determined by the sentence main predicate) is stored in the edge column. 

The first 10 most common relationships can be shown using the following command:

edges["edge"].value_counts().head(10)

The most common edge types correspond to very basic predicates. Indeed, together with very  

general verbs (such as be, have, tell, and give), we can also find predicates more related to a 

financial context (such as buy, sell, or make). Using all of these edges, we can now create our 

knowledge base graph using the networkx utility function:

https://github.com/NSchrading/intro-spacy-nlp/blob/master/subject_object_extraction.py
https://github.com/NSchrading/intro-spacy-nlp/blob/master/subject_object_extraction.py
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G = nx.from_pandas_edgelist(

    edges, "source", "target",

    edge_attr=True, create_using=nx.MultiDiGraph()

)

By filtering the edge DataFrame and creating a subnetwork using this information, we can analyze 

specific relationship types, such as the lend edge:

G = nx.from_pandas_edgelist(

    edges[edges["edge"]=="lend"], "source", "target",

    edge_attr=True, create_using=nx.MultiDiGraph()

)

Figure 8.3 shows the subgraph based on the lend relations. As can be seen, it already provides 

interesting economical insights, such as the economic relationships between countries, such as 

Venezuela-Ecuador and US-Sudan.

Figure 8.3: Example of a portion of the knowledge graph, for the edges relating to lending 
relationships

You can indeed play around with the preceding code by filtering the graph based on other  

relationships, and we definitely encourage you to do so, in order to further unveil interesting  

insights from the knowledge graphs we just created. In the next section, we will show you another 

method that allows us to encode the information extracted from the text into a graph structure. 
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In doing so, we will also make use of a particular type of graph, named bipartite graphs, which we 

introduced in Chapter 1, Getting Started with Graphs.

Knowledge graphs are rather interesting for unveiling and querying aggregated information 

over entities. However, other graph representations are also possible and can be useful in  

other situations. For example, when you want to cluster documents semantically, the knowledge 

graph may not be the best data structure to be used and analyzed. Knowledge graphs such as 

the one presented earlier are also not very effective for finding indirect relationships, such as  

identifying competitors, similar products, and so on, that do not often occur in the same sentence, 

but that often occur in the same document.

In order to address these limitations, in the next section, we will encode the information present 

in the document under the form of a bipartite graph.

Bipartite document/entity graphs
Bipartite graphs, a special class of graphs as described in Chapter 1, Getting Started with Graphs, 

are well suited for representing relationships between two distinct sets of entities. Unlike  

general graphs, where connections can exist between any pair of nodes, bipartite graphs  

enforce a structure: edges exist only between nodes belonging to different sets. This makes them  

particularly powerful for modeling systems with naturally dual components, such as users and 

items in recommendation systems, or, as in our case, documents and entities.

In this section, for each document, we will extract the entities that are most relevant, and  

connect a node, representing the document, with all the nodes representing the relevant entities 

in such a document. Each node may have multiple relationships: by definition, each document 

connects multiple entities. By contract terms, an entity can be referenced in multiple documents. 

As we will see in the following subsections, multiple cross-referencing in general can be used for  

creating a measure of similarity between entities and documents. This similarity can also be 

used to project the bipartite graph into one particular set of nodes, either the document nodes 

or the entity nodes.

To this aim, in order to build our bipartite graph, we first need to extract the relevant entities of 

a document. The term relevant entity is clearly fuzzy and broad. In the present context, we will 

consider as a relevant entity either a named entity (such as organization, person, or location  

recognized by the NER engine) or a keyword, that is to say, a word (or a composition of words) 

that identifies and generally describes the document and its content. For instance, suitable  

keywords for this book may be “graph,” “network,” “machine learning,” “supervised model,” or  

“unsupervised model.”
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There exist many algorithms that extract keywords from a document. One very simple way of 

doing this is based on the so-called TF-IDF score, which is based on building a score for each token 

(or group of tokens, often referred to as grams). This score is calculated using two components:

•	 Term frequency (TF), which measures the frequency of a word i in a specific document j, 

normalized by the total number of words in the document. This is given by:

TF = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖/∑𝑐𝑐𝑖𝑖𝑖𝑖𝑖
•	 Inverse document frequency (IDF), which measures how unique a word i is across the 

corpus. It is given by:

IDF = log 𝑁𝑁𝑁𝑁𝑁 𝑁 𝑁𝑁𝑖𝑖)
where N is the total number of documents, and 𝐷𝐷𝑖𝑖 is the number of documents containing the 

word i.

The TF-IDF score can be computed as: TF ∙ 𝐼𝐼𝐼𝐼𝐼𝐼

The TF-IDF score therefore promotes words that are repeated many times in the document and 

penalizes words that are standard and therefore might not be very representative for a document. 

There also exist more sophisticated algorithms.

One method that is quite powerful and worth mentioning in the context of this book is TextRank; 

it is also based on a graph representation of the document. TextRank creates a network where the 

nodes are a single token (e.g., a word) and where edges are created between tokens that appear 

within a specified window of one another in the text. Here, “window” refers to a fixed number of 

consecutive words in the text; if two tokens occur within this range, they are considered connected.

After creating such a network, PageRank is used to compute the centrality for each token,  

providing a score that allows a ranking within the document based on the centrality score. The 

most central nodes (up to a certain ratio, generally between 5% and 20% of the document size) 

are identified as candidate keywords. When two candidate keywords occur close to each other, 

they get aggregated into composite keywords, made up of multiple tokens. Implementations of 

TextRank are available in many NLP packages. One such implementation is gensim, which can 

be used quite straightforwardly:

from gensim.summarization import keywords

text = corpus["clean_text"][0]

keywords(text, words=10, split=True, scores=True,

         pos_filter=('NN', 'JJ'), lemmatize=True)
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This provides an output of this form:

[('trading', 0.4615130639538529),

 ('said', 0.3159855693494515),

 ('export', 0.2691553824958079),

 ('import', 0.17462010006456888),

 ('japanese electronics', 0.1360932626379031),

 ('industry', 0.1286043740379779),

 ('minister', 0.12229815662000462),

 ('japan', 0.11434500812642447),

 ('year', 0.10483992409352465)]

Where the score represents the centrality, representing the importance for a given token. As you can 

see, some composite tokens may also occur, such as japanese electronics. Keyword extraction 

can be implemented to compute the keywords for the entire corpus, storing the information in 

our corpus DataFrame:

corpus["keywords"] = corpus["clean_text"].apply(

    lambda text: keywords(

       text, words=10, split=True, scores=True,

       pos_filter=('NN', 'JJ'), lemmatize=True)

)

To create a bipartite graph using both keywords and named entities as relevant entities, we need 

to extract named entities and encode the information in a data format that is compatible with our 

representation of keywords. This can be done using a few utility functions for the following tasks:

1.	 Extracting all the entities of a certain type (e.g., location, organization, and person) and 

filtering by the number of occurrences in the document (to only retain the most relevant 

entities), returning a pandas DataFrame:

def extractEntities(ents, minValue=1,

                    typeFilters=["GPE", "ORG", "PERSON"]):

    entities = pd.DataFrame([

       {

          "lemma": e.lemma_,

          "lower": e.lemma_.lower(),

          "type": e.label_

       } for e in ents if hasattr(e, "label_")

    ])
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    if len(entities)==0:

        return pd.DataFrame()

    g = entities.groupby(["type", "lower"])

    summary = pd.concat({

        "alias": g.apply(lambda x: x["lemma"].unique()),

        "count": g["lower"].count()

    }, axis=1)

    return summary[summary["count"]>1]\

             .loc[pd.IndexSlice[typeFilters, :, :]]

2.	 Reparsing the pandas DataFrame to only extract the entities of a given type into a list 

(empty if there are no entities of that given type):

def getOrEmpty(parsed, _type):

    try: 

        return list(parsed.loc[_type]["count"]\

           .sort_values(ascending=False).to_dict().items())

    except:

        return []

Wrapping up the previous two utilities functions into a more high-
level function:

def toField(ents):

    typeFilters=["GPE", "ORG", "PERSON"]

    parsed = extractEntities(ents, 1, typeFilters)

    return pd.Series({_type: getOrEmpty(parsed, _type)

                      for _type in typeFilters})

With these functions, parsing the spacy tags can be simply done with:

entities = corpus["parsed"].apply(lambda x: toField(x.ents))

The entities DataFrame can be easily merged with the corpus DataFrame using the pd.concat 

function, placing all information in a single data structure:

merged = pd.concat([corpus, entities], axis=1)
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Now that we have all the ingredients needed for our bipartite graph, we can create the edge list 

by looping over all document-entity or document-keyword pairs:

edges = pd.DataFrame([

    {"source": _id, "target": keyword, "weight": score, "type": _type}

    for _id, row in merged.iterrows()

    for _type in ["keywords", "GPE", "ORG", "PERSON"]

    for (keyword, score) in row[_type]

])

Once the edge list is created, we can produce the bipartite graph using the networkx APIs:

G = nx.Graph()

G.add_nodes_from(edges["source"].unique(), bipartite=0)

G.add_nodes_from(edges["target"].unique(), bipartite=1)

G.add_edges_from([

    (row["source"], row["target"])

    for _, row in edges.iterrows()

])

We can now start by looking at an overview of our graph by using nx.info:

Type: Graph

Number of nodes: 25933

Number of edges: 100726

Average degree:   7.7682

Next, we will project the bipartite graph into either of the two sets of nodes: entities or documents. 

This will allow us to explore the difference between the two graphs we obtain and cluster both 

the terms and documents using the unsupervised techniques described in Chapter 4, Unsupervised 

Graph Learning.

Entity-entity graph
We start by projecting our graph into the set of entity nodes. In other words, we create a graph 

with each node representing an entity or a keyword; in this graph, entities are considered  

connected if they appear in the same document. networkx provides a special submodule to deal 

with bipartite graphs, networkx.algorithms.bipartite, where a number of algorithms have 

already been implemented. In particular, the submodule networkx.algorithms.bipartite.

projection provides a number of utility functions to project bipartite graphs on a sub set of nodes. 
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Before performing the projection, we conveniently categorize the nodes into two distinct sets 

(either documents or entities), using the “bipartite” property we created when generating the 

graph:

document_nodes = {n

                  for n, d in G.nodes(data=True)

                  if d["bipartite"] == 0}

entity_nodes = {n

                for n, d in G.nodes(data=True)

                if d["bipartite"] == 1}

The graph projection basically creates a new graph with the set of selected nodes. Edges are  

places between the nodes depending on whether two nodes have neighbors in common. The 

basic function projected_graph creates such a network with unweighted edges. However, it 

is usually more informative to have edges weighted depending on the number of common  

neighbors or by summing up the weights of all common neighbors. The projection module 

provides different functions depending on how the weights are computed. In the following  

subsections, we will use the overlap_weighted_projected_graph, where the edge weight is 

computed using the Jaccard similarity based on common neighbors. However, we encourage 

you to also explore the other options, which, depending on your use case and context, may better 

suit your aims.

Filtering the graph: Be aware of dimensions
A point of caution when dealing with projections: be aware of the dimension of the  

projected graph. In certain cases, such as the one we are considering here, projection may create  

extremely large numbers of edges, which makes the graph hard to be analyzed. In our use case, 

in fact, following the logic we used to create our network, a document node is connected to at 

least 10 keywords, plus a few entities. In the resulting entity-entity graph, all these entities will be  

connected with each other, as they share at least one common neighbor (the document that  

contains them). Therefore, for just one document, we will be generating around 15 ∙ 14 2⁄ ≈ 100 
edges. If we multiply this number by the number of documents, ~ 105, we end up with a number 

of edges that, despite the small use case, already becomes almost intractable, with a few million 

edges. Although this surely represents a conservative upper bound (as some of the co-occurrence  

between entities will be common in many documents and therefore not repeated), it nevertheless 

provides an order of magnitude of the complexity that you might expect. We, therefore, encourage 

you to use some caution before projecting your bipartite graph, depending on the topology of the 

underlying network and the size of your graph. One trick to reduce this complexity and make the 

projection feasible is to only consider high-degree entity nodes. 
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Most of the complexity indeed arises from the presence of entities that appear only once or very 

few times, but still generate cliques within the graph. Such entities are not very informative to 

capture patterns and provide insights. Besides, they are possibly strongly affected by statistical 

variability. On the other hand, we should focus on strong correlations that are supported by larger 

occurrences and provide more reliable statistical results.

We, therefore, only consider high-degree entity nodes. To this aim, we first generate the filtered 

bipartite subgraph, which excludes nodes with low degree value, namely, smaller than 5:

nodes_with_low_degree = {n

    for n, d in nx.degree(G, nbunch=entity_nodes) if d<5}

subGraph = G.subgraph(set(G.nodes) - nodes_with_low_degree)

This subgraph can now be projected without generating a graph with an excessive number of 

edges:

entityGraph = overlap_weighted_projected_graph(

    subGraph,

    {n for n in subGraph.nodes() if n in entity_nodes}

)

We can check the dimension of the graph with the nx.info networkx function, which gives the 

following outcome:

Number of nodes: 2378

Number of edges: 120512

Average degree: 101.3558

Despite the filters applied, the number of edges and the average node degree are still quite large. 

Figure 8.4 shows the distribution of the degree and the edge weights, where we can observe one 

peak in the degree distribution at fairly low values, with a fat tail toward large degree values. 

Also, the edge weight shows a similar behavior, with a peak at rather low values and fat right 

tails. These distributions indeed suggest the presence of a number of small communities, namely 

cliques, connected to each other via some central nodes.
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Figure 8.4: Degree (left) and weight (right) distribution for the entity-entity network

The distribution of the edge weights also suggests that a second filter could be applied. The filter 

on the entity degree that we previously applied on the bipartite graph indeed allowed us to filter 

out rare entities that appeared on only very few documents. However, the resulting graph could 

also be affected by an opposite problem: popular entities may be connected just because they 

tend to appear often in documents, even if there is not an interesting causal connection between 

them. Consider U.S. and Microsoft. They are almost surely connected, as it is extremely likely 

that there will be at least one or few documents where they both appear. However, if there is 

not a strong and causal connection between them, it is very unlikely that the Jaccard similarity 

will be large. Considering only the edges with the largest weights allow you to focus on the most 

relevant and possibly stable relations. The edge weight distribution shown in Figure 8.4 suggests 

that a suitable threshold could be 0.05:

filteredEntityGraph = entityGraph.edge_subgraph(

    [edge

     for edge in entityGraph.edges

     if entityGraph.edges[edge]["weight"]>0.05])

Indeed, such a threshold reduces the number of edges significantly, making the network feasible 

to be analyzed, as we can see by using nx.info:

Number of nodes: 2265

Number of edges: 8114

Average degree:   7.1647
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Figure 8.5: Degree distribution (left) and edge weight distribution (right) for the resulting 
graph, after the filtering based on the edge weight

Figure 8.5 shows the distribution of node degree and edge weights for the filtered graph. The 

distribution for the edge weights corresponds to the right tail of the distribution in Figure 8.4. 

The relation of degree distribution with Figure 8.4 is less obvious, and it shows a peak of nodes 

that has a degree around 10, as opposed to the peak seen in Figure 8.4 that was observed in the 

low range, around 100.

Analyzing the graph
To obtain some further insights on the topology of the network, we also compute its  

connected components alongside some global measures, such as the average shortest path, 

clustering coefficient, and global efficiency.

As shown in the previous chapters, the connected components can be obtained using networkx’s 

utility functions:

components = nx.connected_components(filteredEntityGraph)

pd.Series([len(c) for c in components])

In our analysis, the filtered graph is composed of five different connected components, although 

the largest one almost entirely accounts for the whole graph (having 2,254 out of 2,265 nodes) 

with the other connected components being very small.



Chapter 8 257

The graph can also be visualized using Gephi, as shown in the previous chapters:

Figure 8.6: Entity-entity network highlighting the presence of multiple small subcommunities

The global properties of the largest components can be found using the following snippet:

comp = components[0]

global_metrics = pd.Series({

    "shortest_path": nx.average_shortest_path_length(comp),

    "clustering_coefficient": nx.average_clustering(comp),

    "global_efficiency": nx.global_efficiency(comp)

})

Note that the shortest path and global efficiency may require a few minutes of computations. 

The following results are obtained:

{

    'shortest_path':  4.69461456714924,

    'clustering_coefficient':  0.2108929012144935,

    'global_efficiency': 0.22802077231368997

}
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Already from the magnitude of these metrics (shortest path of about 5 and clustering  

coefficient around 0.2), together with the degree distribution shown above, we can see a general  

tendency of the network of having multiple communities of limited size. The use of other interesting  

local properties, such as degree, PageRank, and betweenness centralities distributions, is shown 

in Figure 8.7, which shows how all these measures tend to correlate and connect to each other. 

Indeed, as also discussed in Chapter 1, Getting Started with Graphs, the correlation between these 

measures indicates that, despite the different formulation, they are all relevant quantities to 

identify “central” nodes: nodes with many neighbors also tend to be highly connected (and highly 

connect with the various nodes), as well as being the nodes that are most important according 

to the page rank score.

Figure 8.7: Relations and distribution between degree, page rank, and betweenness centrality 
measures

After providing a description in terms of local/ global measures, as well as a general visualization 

of the network, we will apply some of the techniques we have seen in previous chapters to identify 

some insights and information within the network, using the unsupervised techniques described 

in Chapter 4, Unsupervised Graph Learning.

We start by using the Louvain community detection algorithm, which aims at identifying the best 

partitioning of the nodes into disjointed communities by optimizing the modularity:

import community

communities = community.best_partition(filteredEntityGraph)
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Note that the results might vary between runs because of random seeds. However, a similar  

partition, with a distribution of cluster memberships, to the one shown in Figure 8.8 should 

emerge. We generally observe around 30 communities, with the larger ones having around 130-

150 documents:

Figure 8.8: Distribution of the size of the detected communities

In Figure 8.9, we show a close-up of one of the communities, where one can identify a particular 

topic/argument related to the word “turkey”:
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Figure 8.9: Close-up for one of the communities identified. In the top image, beside the  
entity nodes, we also show the document nodes, thus uncovering the structure of the related 

bipartite graph

Several analyses are possible using the bipartite graph above. For instance, from Figure 8.9 we 

can uncover a close relationship between Turkey and Greece, which, by filtering the documents 

based on this relationship, we can discover to be due to some tensions between the two countries 

because of oil drilling in the Aegean Sea (please also refer to the attached Python notebooks for 

further information or explore other relationships).

As shown in Chapter 4, Unsupervised Graph Learning, another way of extracting insightful  

information on the topology and similarities between entities could also be obtained via node 

embeddings. In particular, we can use node2vec, which, by feeding a randomly generated walk 

to a skip-gram model, is able to project the nodes into a vector space, where close-by nodes are 

mapped into nearby points:

from node2vec import Node2Vec

node2vec = Node2Vec(filteredEntityGraph, dimensions=5, num_walks=500)

model = node2vec.fit(window=10)

embeddings = model.wv
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In the vector space of embeddings, one could apply traditional clustering algorithms, such as 

GaussianMixture, K-means, or DBSCAN, for instance. As done in previous chapters, we could also 

project the embeddings into a 2D plane using t-SNE to visualize clusters and communities. Besides 

giving another option to identify clusters/communities within the graph, Node2Vec can also be 

used to also provide similarity between words, as traditionally done by Word2Vec. For instance, 

we can query the Node2Vec embedding model and find the most similar words to turkey:

[('greek', 0.9906390309333801),

 ('workers', 0.9882111549377441),

 ('norwegian', 0.9852849245071411),

 ('agreed', 0.9809741377830505),

 ('greece', 0.9735589623451233),

 ('lme', 0.9709354043006897),

 ('lira', 0.9682418704032898)]

The words above indeed show the words that are most similar to the “Turkey” entity,  

measured as the cosine similarity between embedding vectors for various entities based on their  

“economic” relation derived from the document, for instance, the aforementioned tension between 

Turkey and Greece that was also highlighted in the community detection above. Although the 

two approaches, Node2Vec and Word2Vec, indeed share some methodological similarities, the 

two embedding schemes different type of information: Word2Vec is built directly from the text 

and encloses relationships at a sentence/syntactic level. Node2Vec, on the other hand, encodes 

a description that acts more on a document level, derived from the bipartite entity-document 

graph and its projection on the entity-entity graph used to train the Node2Vec model. As such, 

the Node2Vec embedding provides a similarity among entities, is inferred from the corpus, and 

is not based on syntactic references. For instance, the distance between Turkey and Greece may 

be comparable/similar to the one between any other pair of countries in a Word2Vec embedding, 

given that the embedding may be able to generally represent the “nation” concept in the embedded 

space. However, given that Greece and Turkey often appear together in various documents because 

of the tension in the Aegean Sea, as also shown by the community detection algorithm, the two 

nations will be closer in a Node2Vec embedding, which encodes the structure of the entity graph.

Document-document graph
We will now turn to projecting the bipartite graph into a set of document nodes in order to create 

a document-document network to be analyzed. In other words, we will create a graph where 

nodes represent documents and edges represent shared entities or keywords. 
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In a similar way to as what we did when creating an entity-entity network, we use the overlap_

weighted_projected_graph function to obtain a weighted graph that can be filtered to reduce 

the number of significant edges. Indeed, the topology of the network and the business logic used 

to build the bipartite graph do not favor clique creation as we have seen with the entity-entity 

graph: two nodes will be connected only when they share at least one keyword: organization, 

location, or person. While this connection is certainly possible, it is not very likely within groups 

of 10-15 nodes, as observed for the entities.

As before, we can easily build our network with the following code:

documentGraph = overlap_weighted_projected_graph(

    G,

    document_nodes

)

In Figure 8.10, we can inspect the distribution of the degree and the edge weight in order to decide 

the value of the threshold to be used to filter out edges. Interestingly, the node degree distribution 

shows a clear peak toward large values as compared to the degree distribution observed for the 

entity-entity graph. This suggests the presence of several supernodes (a node with a rather large 

degree and that is highly connected). Also, the edge weight distribution shows the tendency 

of the Jaccard index to attain values close to 1, thus much larger than the ones observed in the 

entity-entity graph.

Figure 8.10: Degree and edge weight distribution for the projection of the bipartite graph into 
the document-document network
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These two observations highlight a profound difference between the two networks: whereas the 

entity-entity graph is characterized by a large number of tightly connected communities (namely 

cliques), the document-document graph is characterized by a core of tightly connected nodes 

with large degrees and a periphery of weakly connected or disconnected nodes.

It can be convenient to store all the edges in a DataFrame in order to plot them, and later use the 

DataFrame to filter them to create a subgraph:

allEdgesWeights = pd.Series({

    (d[0], d[1]): d[2]["weight"]

    for d in documentGraph.edges(data=True)

})

From Figure 8.10, it seems a reasonable choice to set a threshold value for the edge weight of 

0.6, which only retains a few thousand edges, therefore allowing us to generate a more tractable 

network using the networkx function edge_subgraph:

filteredDocumentGraph = documentGraph.edge_subgraph(

    allEdgesWeights[(allEdgesWeights>0.6)].index.tolist()

)

Figure 8.11 shows the resulting distribution for the degree and for the edge weight for the reduce 

graph:

Figure 8.11: Degree and edge weight distribution for the document-document filtered network
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The substantial difference in topology of the document-document graph with respect to the 

entity-entity graph can also be clearly seen in Figure 8.12 where we offer you a full network visu-

alization. As anticipated by the distributions, the document-document network is characterized 

by a core network and a number of weakly connected satellites. The satellites represent all the 

documents that share no or few keywords or entity common occurrences. The number of discon-

nected documents is actually quite large and accounts for almost 50% of the total.

Figure 8.12: (Left) Representation of the document-document filtered network, highlighting the 
presence of a core and a periphery. (Right) Close-up of the core, with some subcommunities 

embedded. The node size is proportional to the node degree

It can be of interest to extract the connected components for this network, using the following 

commands:

components = pd.Series({

    ith: component

    for ith, component in enumerate(

        nx.connected_components(filteredDocumentGraph)

    )

})

In Figure 8.13, we also show the distribution for the connected component sizes, where the  

presence of a few very large clusters (the cores) can clearly be seen, together with a large number 

of disconnected or very small components (the periphery or satellites). This structure is strikingly 

different from the one observed for the entity-entity graph where all nodes generated a very large, 

connected cluster.
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Figure 8.13: Distribution of the connected component sizes, highlighting the presence of 
many small-size communities (representing the periphery) and a few large communities  

(representing the core)

It can be interesting to further investigate the structure of the core components. We can extract 

from the full graph the subgraph composed of the largest components of the network with the 

following code:

coreDocumentGraph = nx.subgraph(

    filteredDocumentGraph,

    [node

     for nodes in components[components.apply(len)>8].values

     for node in nodes]

)

We can inspect the properties of the core network using nx.info, which gives the following output:

Type: Graph

Number of nodes: 1050

Number of edges: 7112

Average degree:  13.5467

The left panel in Figure 8.12 shows a Gephi visualization of the core. As can be seen, the core is  

composed of few communities, with nodes with fairly large degrees strongly connected to each 

other.
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As done for the entity-entity network, we can process the network to identify communities  

embedded in the graph. However, differently from before, the document-document graph 

now provides a means for judging the clustering using the document labels. Indeed, we expect  

documents belonging to the same topic to be close and connected to each other. Moreover, as we 

will see, this will also allow us to identify similarities among topics.

First, let us start by extracting the candidate communities:

import community

communities = pd.Series(

    community.best_partition(filteredDocumentGraph)

)

Differently from before, the number of detected communities is now very large, around 400,  

reflecting the core-periphery structure with multiple small communities in the periphery.

We then extract the topic mixture within each community in order to see whether there is  

homogeneity (all documents belonging to the same class) or some correlation between topics.

We first create a function that returns the number of occurrences for the various topics in a given 

sub-corpus, represented in a DataFrame, df:

from collections import Counter

def getTopicRatio(df):

    return Counter([label

                    for labels in df["label"]

                    for label in labels])

We then use this function on each of the communities that the algorithm had extracted:

communityTopics = pd.DataFrame.from_dict({

    cid: getTopicRatio(corpus.loc[comm.index])

    for cid, comm in communities.groupby(communities)

}, orient="index")

Finally, we normalize the counts to obtain the ratio of topics, summing up to 1:

normalizedCommunityTopics = (

    communityTopics.T / communityTopics.sum(axis=1)

).T



Chapter 8 267

Therefore, the normalizedCommunityTopics is a DataFrame that for each community (row in the 

DataFrame) provides the topic mixture (in percentage) of the different topics (along the column 

axis). In order to quantify the heterogeneity of the topic mixture within the clusters/communities, 

we compute the Shannon entropy of each community. Shannon entropy is a measure of diversity 

in a system, where higher diversity corresponds to greater entropy. It is defined as follows:𝐼𝐼𝑐𝑐 = −∑log 𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖 

Where 𝐼𝐼𝑐𝑐 represents the entropy of the cluster c and the 𝑡𝑡𝑐𝑐𝑐𝑐  corresponds to the percentage of topic 

i in community c. We compute the empirical Shannon entropy for all communities as follows:

normalizedCommunityTopics.apply(

    lambda x: np.sum(-np.log(x)), axis=1)

In Figure 8.14, we show the entropy distribution across all communities. Most of communities 

have zero or very low entropy, thus suggesting that documents belonging to the same class (label) 

tend to cluster together.

Figure 8.14: Entropy distribution of the topic mixture in each community

Even if most of the communities show zero or low variability around topics, it is interesting to 

investigate whether there exists a relationship between topics, when communities show some 

heterogeneity. Namely, we compute the correlation between topic distributions:

topicsCorrelation = normalizedCommunityTopics.corr().fillna(0)
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They can be represented and visualized using a topic-topic network:

topicsCorrelation[topicsCorrelation<0.8]=0

topicsGraph = nx.from_pandas_adjacency(topicsCorrelation)

In the left panel of Figure 8.15, we show the full graph representation for the topics network. As 
observed for the document-document network, the topic-topic graph also shows a structure 
organized in a periphery of disconnected nodes and a strongly connected core. The right panel 
of Figure 8.15 shows a close-up of the core network that interestingly indicates a correlation that 
is supported by a semantic meaning with the topics relating to commodities tightly connected 

to each other.

Figure 8.15: (Left) Topic-topic correlation graph, organized with a periphery-core structure. 
(Right) Close-up of the core of the network

In this section, we have deeply analyzed the different forms of networks that arise when analyzing 
documents and, more generally, text sources. In order to do so, we used both global and local 
properties to statistically describe the networks, as well as some unsupervised algorithms that 
allowed us to unveil some structure within the graph. In the next section, we will show you how 

to utilize these graph structures when building a machine learning model.

Building a document topic classifier
In order to show you how to utilize t graph structure, we will focus in the following  

subsections on using the topological information and the connections between entities and 

documents provided by the bipartite entity-document graph to train multi-label classifiers 

that are able to predict the document topics. 
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In order to do this, we will analyze two different approaches:

•	 A shallow machine learning approach, where we will use the embeddings extracted from 

the bipartite network to train traditional classifiers, such as a RandomForest classifier

•	 A more integrated and differentiable approach using a graph neural network, which is 

applied on heterogeneous graphs (such as the bipartite graph)

In the following code block, we will consider the 10 most common topics for which we have 

enough documents to train and evaluate our models:

from collections import Counter

topics = Counter(

    [label

     for document_labels in corpus["label"]

     for label in document_labels]

).most_common(10)

The preceding code block produces the output shown below, showing the names of the topics 

that we will focus on in the following analysis:

[('earn', 3964), ('acq', 2369), ('money-fx', 717),

 ('grain', 582), ('crude', 578), ('trade', 485),

 ('interest', 478), ('ship', 286), ('wheat', 283),

 ('corn', 237)]

When training topic classifiers, we will restrict our focus only to those documents that belong to 

the preceding labels. The filtered corpus can be easily obtained by the following code:

topicsList = [topic[0] for topic in topics]

topicsSet = set(topicsList)

dataset = corpus[corpus["label"].apply(

    lambda x: len(topicsSet.intersection(x))>0

)]

Now that we have extracted and structured the dataset, we are ready to start training our topic 

models and evaluating their performances. In the next subsection, we will start by creating a 

simple model using shallow-learning methods, and then increase the complexity of the model 

in the following subsection by using graph neural networks.
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Shallow-learning methods
We start by implementing a shallow approach for the topic classification tasks, employing the 

network information. We will show you how to do this, in a step-by-step procedure that you can 

further customize depending on your use case:

1.	 First of all, we start by computing the embeddings using Node2Vec on the bipartite graph. 

The choice of using the bipartite graph is crucial in order to efficiently utilize the topo-

logical information and the connection between entities and documents. In fact, filtered 

document-document networks are characterized by a periphery with many nodes dis-

connected, which would not benefit from the topological information. On the other hand, 

the unfiltered document-document network will have a large number of edges, which 

makes the scalability of the approach an issue:

from node2vec import Node2Vec

node2vec = Node2Vec(G, dimensions=10)

model = node2vec.fit(window=20)

embeddings = model.wv

Here, the embedding dimension as well as the window used for generating the walks can 

be seen as hyper-parameters to be optimized via cross-validation. Some possible choices 

are 10, 20, and 30 for both variables, although this may vary based on the use case.

2.	 In order to make it computationally efficient, a set of embeddings can be computed be-

forehand, saved to disk, and later used in the optimization. This would work under the 

assumption that we are in a semi-supervised setting or in a transductive task, where we have 

all the connection information on the entire dataset, apart from the labels, at training time. 

Later in this chapter, we will outline another approach, based on the graph neural network, 

that provides an inductive framework for integrating a topology when training classifiers.

We therefore store the embeddings in a file:

pd.DataFrame(embeddings.vectors,

             index=embeddings.index2word

).to_pickle(f"graphEmbeddings_{dimension}_{window}.p")

We can choose a different name for each combination of dimension and window.

3.	 These embeddings can be simply integrated into a scikit-learn Transformer in order to 

be used in a grid-search cross-validation:
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from sklearn.base import BaseEstimator

class EmbeddingsTransformer(BaseEstimator):

    def __init__(self, embeddings_file):

        self.embeddings_file = embeddings_file       

    def fit(self, *args, **kwargs):

        self.embeddings = pd.read_pickle(

            self.embeddings_file)

        return self       

    def transform(self, X):

        return self.embeddings.loc[X.index]   

    def fit_transform(self, X, y):

        return self.fit().transform(X)

4.	 In order to build a modeling training pipeline, we split our corpus into training and test 

sets, using the helper function:

def train_test_split(corpus):

    indices = [index for index in corpus.index]

    train_idx = [idx

                 for idx in indices

                 if "training/" in idx]

    test_idx = [idx

                for idx in indices

                if "test/" in idx]

    return corpus.loc[train_idx], corpus.loc[test_idx]

We then use the helper function to split the dataset, as follows:

train, test = train_test_split(dataset)

5.	 We also build functions to conveniently extract features and labels:

def get_features(corpus):

    return corpus["parsed"]

def get_labels(corpus, topicsList=topicsList):

    return corpus["label"].apply(
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        lambda labels: pd.Series(

           {label: 1 for label in labels}

        ).reindex(topicsList).fillna(0)

    )[topicsList]

def get_features_and_labels(corpus):

    return get_features(corpus), get_labels(corpus)

features, labels = get_features_and_labels(train)

6.	 We can now instantiate the modeling pipeline:

from sklearn.pipeline import Pipeline

from sklearn.ensemble import RandomForestClassifier

from sklearn.multioutput import MultiOutputClassifier

pipeline = Pipeline([

    ("embeddings", EmbeddingsTransformer(

        "my-place-holder")

    ),

    ("model", MultiOutputClassifier(

        RandomForestClassifier())

    )

])

7.	 We define the parameter space as well as the configuration for the cross-validated grid 

search:

from glob import glob

param_grid = {

    "embeddings__embeddings_file": glob("graphEmbeddings_*"),

    "model__estimator__n_estimators": [50, 100],

    "model__estimator__max_features": [0.2,0.3, "auto"],

}

grid_search = GridSearchCV(

    pipeline, param_grid=param_grid, cv=5, n_jobs=-1)

8.	 Finally, we train our topic model by using the fit method of the sklearn API:

model = grid_search.fit(features, labels)
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Great! You have just created your topic model that uses the graph information. Once the 

best model has been identified, we can also use this model on the test dataset to evalu-

ate its performance. In order to do so, we start by defining the following helper function, 

which allows us to obtain a set of predictions:

def get_predictions(model, features):

    return pd.DataFrame(

        model.predict(features),

        columns=topicsList, index=features.index)

preds = get_predictions(model, get_features(test))

labels = get_labels(test)

Using sklearn 's functionalities, we can promptly look at the performances of the trained 

classifier:

from sklearn.metrics import classification_report

print(classification_report(labels, preds))

The code provides the following output, showing an overall F1-score ranging from 0.6 to 

0.8. Such variation may depend on how unbalanced classes are accounted for:

              precision    recall  f1-score   support

           0       0.97      0.94      0.95      1087

           1       0.93      0.74      0.83       719

           2       0.79      0.45      0.57       179

           3       0.96      0.64      0.77       149

           4       0.95      0.59      0.73       189

           5       0.95      0.45      0.61       117

           6       0.87      0.41      0.56       131

           7       0.83      0.21      0.34        89

           8       0.69      0.34      0.45        71

           9       0.61      0.25      0.35        56

   micro avg       0.94      0.72      0.81      2787

   macro avg       0.85      0.50      0.62      2787

weighted avg       0.92      0.72      0.79      2787

 samples avg       0.76      0.75      0.75      2787
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You can play around with the model type and hyper-parameter of the analytical pipeline, by 

varying the models as well as experimenting with different values to encode the embeddings. 

As mentioned before, the approach above is clearly transductive, since it uses an embedding 

trained on the entire dataset. This is a common situation in semi-supervised tasks, where the 

labeled information is present only in a small subset of points, and the task is to infer the labels 

for all unknown samples. In the next sub section, we outline how to build an inductive classifier 

using graph neural networks that can be used when test samples are not known at training time.

Graph neural network
We will now describe a neural network-based approach that natively integrates and makes use 

of the graph structure. Graph neural networks have already been introduced in Chapter 3, Neural 

Networks and Graphs, and Chapter 4, Unsupervised Graph Learning. However, here we will show you 

how to apply this framework to heterogeneous graphs, that is, a graph where there is more than 

one type of node. Each node type might have a different set of features and the training might 

target only one specific node type over the other.

The approach we present here will make use of stellargraph and the GraphSAGE algorithm, that 

we have already described previously. A similar example using PyTorch is also available in the 

GitHub repository (https://github.com/PacktPublishing/Graph-Machine-Learning/blob/

main/Chapter08) for interested readers.

More specifically, given that we are dealing with bipartite graphs, we will be using the HinSAGE 

algorithm, which generalizes the GraphSAGE algorithm from homogeneous graphs (i.e., with 

only one node type) to heterogenous graphs (i.e., with multiple node types). These methods also 

support the use of features for each node, instead of just relying on the topology of the graph. If 

one does not have node features, the one-hot node representation might be used in its place, as 

also shown in Chapter 7, Social Network Graphs. However, here, in order to make it more general, 

we will produce a set of node features based on the TF-IDF score (which we saw earlier) for each 

entity and keyword. Here, we will show you a step-by-step guide to help you train and evaluate 

a model based on graph neural networks for predicting document topic classification:

1.	 We start by computing the TF-IDF score for each document. sklearn already provides 

some functionalities that allow us to easily compute the TF-IDF scores from a corpus of 

documents. The sklearn class TfidfVectorizer already comes with a tokenizer embed-

ded. However, since we already have a tokenized and lemmatized version extracted with 

spacy, we can also provide an implementation of a custom tokenizer that makes use of 

spacy processing:

https://github.com/PacktPublishing/Graph-Machine-Learning/blob/main/Chapter08
https://github.com/PacktPublishing/Graph-Machine-Learning/blob/main/Chapter08
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def my_spacy_tokenizer(pos_filter=["NOUN", "VERB", "PROPN"]):

    def tokenizer(doc):

        return [token.lemma_

                for token in doc

                if (pos_filter is None) or

                   (token.pos_ in pos_filter)]

    return tokenizer

That can be used in the TfidfVectorizer:

cntVectorizer = TfidfVectorizer(

    analyzer=my_spacy_tokenizer(),

    max_df = 0.25, min_df = 2, max_features = 10000

)

In order to make the approach truly inductive, the training of the TF-IDF should be done 

only for the training set and then only applied to the test set:

trainFeatures, trainLabels = get_features_and_labels(train)

testFeatures, testLabels = get_features_and_labels(test)

trainedIDF = cntVectorizer.fit_transform(trainFeatures)

testIDF = cntVectorizer.transform(testFeatures)

For our convenience, the two TF-IDF representations (for the training and test sets) can 

now be stacked together into a single data structure representing the features for the 

document nodes for the whole graph:

documentFeatures = pd.concat([trainedIDF, testIDF])

2.	 Besides the feature information for document nodes, we also build a simple feature vector 

for entities, based on the one-hot-encoding representation of the entity type:

entityTypes = {

    entity: ith

    for ith, entity in enumerate(edges["type"].unique())

}

entities = edges\

    .groupby(["target", "type"])["source"]\

    .count()\

    .groupby(level=0).apply(
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        lambda s: s.droplevel(0)\

                   .reindex(entityTypes.keys())\

                   .fillna(0))\

    .unstack(level=1)

entityFeatures = (entities.T / entities.sum(axis=1))

3.	 We now have all the information to create an instance of a StellarGraph, by merging the 

information of the node features, both for documents and for entities, with the connections 

provided by the edges DataFrame. We should only filter out some of the edges/nodes in 

order to only include the documents belonging to the targeted topics:

from stellargraph import StellarGraph

_edges = edges[edges["source"].isin(documentFeatures.index)]

nodes = {"entity": entityFeatures,

         "document": documentFeatures}

stellarGraph = StellarGraph(

    nodes, _edges,

    target_column="target", edge_type_column="type"

)

We have now created our StellarGraph. We can inspect the network similar to how we 

did for networkx, with:

print(stellarGraph.info())

That provides the following overview:

StellarGraph: Undirected multigraph

 Nodes: 23998, Edges: 86849

 Node types:

  entity: [14964]

    Features: float32 vector, length 6

    Edge types: entity-GPE->document, entity-ORG->document, entity-
PERSON->document, entity-keywords->document

  document: [9034]

    Features: float32 vector, length 10000

    Edge types: document-GPE->entity, document-ORG->entity,

document-PERSON->entity, document-keywords->entity



Chapter 8 277

 Edge types:

    document-keywords->entity: [78838]

        Weights: range=[0.0827011, 1], mean=0.258464,

std=0.0898612

        Features: none

    document-ORG->entity: [4129]

        Weights: range=[2, 22], mean=3.24122, std=2.30508

        Features: none

    document-GPE->entity: [2943]

        Weights: range=[2, 25], mean=3.25926, std=2.07008

        Features: none

    document-PERSON->entity: [939]

        Weights: range=[2, 14], mean=2.97444, std=1.65956

        Features: none

The StellarGraph description is actually very informative. Also, StellarGraph handles 

natively different types of nodes and edges and provides out-of-the-box segmented  

statistics for each node/edge type.

4.	 You may have noticed that the graph we have just created includes both training and test 

data. In order to truly test the performance of an inductive approach and avoid leakage 

of information between train and test, we need to create a subgraph with only the data 

available at training time:

targets = labels.reindex(documentFeatures.index).fillna(0)

sampled, hold_out = train_test_split(targets)

allNeighbors = np.unique([n

    for node in sampled.index

    for n in stellarGraph.neighbors(node)

])

subgraph = stellarGraph.subgraph(

    set(sampled.index).union(allNeighbors)

)

The considered subgraph has 16,927 nodes and 62,454 edges, as compared to the 23,998 

nodes and 86,849 edges of the total graph.
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5.	 Now that we only have the data and the network available at training time, we can 

build our machine learning model on top of it. To do so, we first split the data into train,  

validation, and test data. For training, we will only use 10% of the data, also resembling 

a semi-supervised task:

from sklearn.model_selection import train_test_split

train, leftOut = train_test_split(

    sampled,

    train_size=0.1,

    test_size=None,

    random_state=42

)

validation, test = train_test_split(

    leftOut, train_size=0.2, test_size=None, random_state=100,

)

6.	 We can now start to build our graph neural network model using stallargraph and the 

keras API. First of all, we create a generator able to produce the samples that will feed 

the neural network. Note that, since we are dealing with a heterogeneous graph, we need 

a generator that will sample examples from nodes that belongs to a specific class only. 

In the following code block, we will be using the HinSAGENodeGenerator class, which 

generalizes the node generator used for homogeneous graphs to heterogeneous graphs, 

allowing us to specify the node type we want to target:

from stellargraph.mapper import HinSAGENodeGenerator

batch_size = 50

num_samples = [10, 5]

generator = HinSAGENodeGenerator(

    subgraph, batch_size, num_samples,

    head_node_type="document"

)

Using this object, we can then create a generator for the train and validation datasets:

train_gen = generator.flow(train.index, train, shuffle=True)

val_gen = generator.flow(validation.index, validation)
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7.	 We can now create our GraphSAGE model. As already done for the generator, also in this 

case, we need to use a model that is able to handle heterogenous graph. HinSAGE will be 

used in place of GraphSAGE:

from stellargraph.layer import HinSAGE

from tensorflow.keras import layers

graphsage_model = HinSAGE(

    layer_sizes=[32, 32], generator=generator,

    bias=True, dropout=0.5

)

x_inp, x_out = graphsage_model.in_out_tensors()

prediction = layers.Dense(

    units=train.shape[1], activation="sigmoid"

)(x_out)

Note that in the final dense layer, we use a sigmoid activation function instead of  

softmax, since the problem at hand is a multi-class, multi-label task. Softmax would in fact  

normalize all scores to sum to 1, and it is therefore more suited to single-label  

classification. On the other hand, given that a document may belong to more than one 

class, the sigmoid activation function is a more sensible choice in this context. As usual, 

we compile our Keras model:

from tensorflow.keras import optimizers, losses, Model

model = Model(inputs=x_inp, outputs=prediction)

model.compile(

    optimizer=optimizers.Adam(lr=0.005),

    loss=losses.binary_crossentropy,

    metrics=["acc"]

)

8.	 Finally, we train the neural network model with:

history = model.fit(

    train_gen, epochs=50, validation_data=val_gen,

    verbose=1, shuffle=False

)
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Figure 8.16: (Top) Train and validation accuracy versus the number of epochs.  
(Bottom) Binary cross-entropy loss for the training and validation dataset versus 

the number of epochs

Figure 8.16 shows the plots of the evolution for the train and validation losses and  

accuracy versus the number of epochs. As the figure shows, train and validation accuracy 

increase consistently up to around 30 epochs. After the accuracy on the validation set  

settles to a plateau, whereas training accuracy continues to increase, indicating a tendency 

to slight overfitting. Thus, stopping training in the range between 30 and 50 seems a rather  

legitimate choice.
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9.	 Once the model is trained, we can test its performance on the test set:

test_gen = generator.flow(test.index, test)

test_metrics = model.evaluate(test_gen)

This should provide the following values:

loss: 0.0933

accuracy: 0.8795

Note that because of the unbalanced label distribution, accuracy may not be the best choice 

for assessing performances. Besides, the value of 0.5 generally used for thresholding and 

providing label assignment may also be sub-optimal in unbalanced settings.

10.	 To identify the best threshold to be used to classify the documents, we first compute the 

topic assignment probabilities predicted by the model over all the test samples:

test_predictions = pd.DataFrame(

    model.predict(test_gen), index=test.index,

    columns=test.columns)

test_results = pd.concat({

    "target": test,

    "preds": test_predictions

}, axis=1)

We then compute the F1-score with a macro average (where the F1-score for the individual 

classes are averaged) for different threshold choices:

thresholds = [0.01,0.05,0.1,0.2,0.3,0.4,0.5]

f1s = {}

for th in thresholds:

    y_true = test_results["target"]

    y_pred = 1.0*(test_results["preds"]>th)

    f1s[th] = f1_score(y_true, y_pred, average="macro")   

pd.Series(f1s).plot()
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As shown in Figure 8.17, a threshold value of 0.2 seems to be the best choice that achieves 

the best performance:

Figure 8.17: Macro-averaged F1-score versus the threshold used for labeling

11.	 Using the threshold value of 0.2, we can finally extract the classification report on the 

test set:

print(classification_report(

    test_results["target"], 1.0*(test_results["preds"]>0.2))

)

This gives the following output:

              precision    recall  f1-score   support

           0       0.92      0.97      0.94      2075

           1       0.85      0.96      0.90      1200

           2       0.65      0.90      0.75       364

           3       0.83      0.95      0.89       305

           4       0.86      0.68      0.76       296

           5       0.74      0.56      0.63       269

           6       0.60      0.80      0.69       245

           7       0.62      0.10      0.17       150

           8       0.49      0.95      0.65       149

           9       0.44      0.88      0.58       129
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   micro avg       0.80      0.89      0.84      5182

   macro avg       0.70      0.78      0.70      5182

weighted avg       0.82      0.89      0.84      5182

 samples avg       0.83      0.90      0.85      5182

12.	 At this point, we have trained a graph neural network model and assessed its performance. 

We now aim to apply this model on a set of unobserved data—the data that was left out at 

the very beginning—and represent the true test data in an inductive setting. We therefore 

need to instantiate a new generator:

generator = HinSAGENodeGenerator(

    stellarGraph, batch_size, num_samples,

    head_node_type="document")

Note that the graph taken as an input of the HinSAGENodeGenerator is now the entire 

graph (in place of the filtered one used before), with both training and test documents. 

Using this class, we can create a generator that samples from the test nodes only, filtering 

out the ones that do not belong to one of our main, selected topics:

hold_out = hold_out[hold_out.sum(axis=1) > 0]

hold_out_gen = generator.flow(hold_out.index, hold_out)

13.	 The model can then be evaluated over these samples and labels are predicted using the 

threshold identified earlier of 0.2:

hold_out_predictions = model.predict(hold_out_gen)

preds = pd.DataFrame(1.0*(hold_out_predictions > 0.2),

                     index = hold_out.index,

                     columns = hold_out.columns)

results = pd.concat(

    {"target": hold_out,"preds": preds}, axis=1

)

We can finally extract the performance on the inductive test dataset:

print(classification_report(

    results["target"], results["preds"])

)
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This provides the following table:

              precision    recall  f1-score   support

           0       0.93      0.99      0.96      1087

           1       0.90      0.97      0.93       719

           2       0.64      0.92      0.76       179

           3       0.82      0.95      0.88       149

           4       0.85      0.62      0.72       189

           5       0.74      0.50      0.59       117

           6       0.60      0.79      0.68       131

           7       0.43      0.03      0.06        89

           8       0.50      0.96      0.66        71

           9       0.39      0.86      0.54        56

   micro avg       0.82      0.89      0.85      2787

   macro avg       0.68      0.76      0.68      2787

weighted avg       0.83      0.89      0.84      2787

 samples avg       0.84      0.90      0.86      2787

As compared to the shallow-learning method, we can see that we have achieved a substantial 

improvement in performance, between 5 and 10%.

Summary
In this chapter, you have learned how to process unstructured information and how to  

represent such information by means of a graph. Starting from a well-known benchmark  

dataset, Reuters-21578, we applied standard NLP engines to tag and structure textual information. 

These high-level features were then used to create different types of networks: knowledge base  

networks, bipartite networks, projections of bipartite networks onto each subset of node types, 

and a topic-topic similarity network. The different graphs also allowed us to use the tools we have 

presented in previous chapters to extract insights from the network representation.

We used local and global properties in order to show you how these quantities can represent and 

describe structurally different types of networks. Unsupervised techniques were then used in order 

to identify semantic communities and cluster together documents belonging to similar subjects/

topics. Finally, we used the labeled information provided in the dataset to train supervised multi-

class multi-label classifiers, which also utilized the topology of the network.
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In particular, we applied supervised techniques to the case of a heterogeneous graph, where two 

different node types are present: documents and entities. In this setting, we showed you how to 

implement both transductive and inductive approaches using shallow learning and graph neural 

networks, respectively.

In the next chapter, we will turn to another domain where graph analytics can be efficiently 

used to extract insights and/or create machine learning models that leverage network topology:  

transactional data. The use case we look at in the next chapter will also allow you to take the 

bipartite graph concepts introduced in this chapter to another level: tripartite graphs.





9
Graph Analysis for Credit Card 
Transactions

Analysis of financial data is one of the most common and important domains in big data and 

data analysis. Due to the increasing number of mobile devices and the introduction of standard 

platforms for online payments, the amount of transactional data that banks are producing and 

consuming is increasing exponentially.

As a consequence, new tools and techniques are needed to exploit as much as we can from this 

huge amount of information in order to better understand customers’ behavior and support 

data-driven decisions in business processes. Data can also be used to build better mechanisms 

to improve security in the online payment process. Indeed, at the same time as online payment 

systems are becoming increasingly popular due to e-commerce platforms, cases of fraud are also 

increasing. An example of a fraudulent transaction is one performed with a stolen credit card. In 

this case, the fraudulent transaction will be different from the transactions made by the original 

owner of the credit card. This difference in transactional patterns can serve as a basis for detecting 

fraud in automated fraud detection systems.

However, building automatic procedures to detect fraudulent transactions could be a  

complex problem due to the large number of variables involved. Graph machine learning offers a  

powerful approach to tackle this challenge by representing transactional data as a graph, enabling 

the detection of complex relationships and patterns, such as communities of fraudulent behavior, 

that may be missed by traditional methods.
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In this chapter, we will describe how we can represent credit card transaction data as a graph in 

order to automatically detect fraudulent transactions using machine learning algorithms. We will 

start processing the dataset by applying some of the techniques and algorithms we described in 

previous chapters to build a fraud detection algorithm.

The following topics will be covered in this chapter:

•	 Generating a graph from credit card transactions

•	 Extraction of properties and communities from the graph

•	 Application of supervised and unsupervised machine learning algorithms to fraud  

classification

Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter09. Please refer to the Practical exercises section of 

Chapter 1, Getting Started with Graphs, for guidance on how to set up the environment to run the 

examples in this chapter, either using Poetry, pip, or Docker.

Building graphs from credit card transactions
The dataset used in this chapter is the Credit Card Transactions Fraud Detection dataset 

available on Kaggle at the following URL: https://www.kaggle.com/kartik2112/fraud-

detection?select=fraudTrain.csv. We will build two approaches for fraud detection, based 

on bipartite and tripartite graphs.

Overview of the dataset
The dataset is made up of simulated credit card transactions containing legitimate and  

fraudulent transactions for the period January 1, 2019 to December 31, 2020. It includes the credit 

cards of 1,000 customers performing transactions with a pool of 800 merchants. The dataset was 

generated using Sparkov data generation. More information about the generation algorithm is 

available at the following URL: https://github.com/namebrandon/Sparkov_Data_Generation.

For each transaction, the dataset contains 23 different features. In the following table, we will 

show only the information that will be used in this chapter:

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter09
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter09
https://www.kaggle.com/kartik2112/fraud-detection?select=fraudTrain.csv
https://www.kaggle.com/kartik2112/fraud-detection?select=fraudTrain.csv
https://github.com/namebrandon/Sparkov_Data_Generation
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Table 9.1: List of variables used in this chapter

The dataset is indeed a simplified version, where only transaction core data is retained. Despite 

this, the dataset will nevertheless allow a rich analysis of the behavioral patterns and build a 

fraud detection model. In real-world scenarios, transactional data is generally complemented 

by metadata for both customers (like emails, phone numbers, addresses, etc.) and merchants 

(address, product group, legal entity, retailer, etc.) that can be encoded in node features and is 

generally extremely critical to allow graph-based entity resolution.

For the purposes of our analysis, we will use the fraudTrain.csv file. As already suggested, take 

a look at the dataset by yourself. It is strongly suggested to explore and become as comfortable 

as possible with the dataset before starting any machine learning task.

Loading the dataset
The first step of our analysis will be to load the dataset and build a graph. Since the dataset 

represents a simple list of transactions, we need to perform several operations to build the final 

credit card transaction graph. The dataset is a simple CSV file; we can use pandas to load the 

data as follows:

import pandas as pd

df = df[df["is_fraud"]==0].sample(frac=0.20, random_state=42).
append(df[df["is_fraud"] == 1])

In order to help you deal with the dataset, we selected 20% of the genuine transactions and all 

of the fraudulent transactions. As a result, from a total of 1,296,675 transactions, we will only use 

265,342. Moreover, we can also investigate the number of fraudulent and genuine transactions 

in our dataset as follows:

df["is_fraud"].value_counts()
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By way of a result, we get the following:

0    257834

1      7506

In other words, from a total of 265,342 transactions, only 7506 (2.83 %) are fraudulent  

transactions, while the others are genuine.

Building the graphs using networkx
The dataset can be represented as a graph using the networkx library. Before starting with the 

technical description, we will start by specifying how the graph is built from the data. We used 

two different approaches to build the graph – namely, the bipartite and tripartite approaches, 

as described in the paper APATE: A Novel Approach for Automated Credit Card Transaction Fraud  

Detection Using Network-Based Extensions, available at https://www.scinapse.io/

papers/614715210.

For the bipartite approach, we build a weighted bipartite graph 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺 𝐺𝐺𝐺 𝐺𝐺𝐺 , where 𝑉𝑉 𝑉 𝑉𝑉𝑐𝑐 ∪ 𝑉𝑉𝑚𝑚, 
and where each node 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐  represents a customer, and each node 𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 represents a merchant. 

An edge (𝑉𝑉𝑐𝑐, 𝑉𝑉𝑚𝑚)  is created if a transaction exists from the customer, 𝑉𝑉𝑐𝑐, to the merchant, 𝑉𝑉𝑚𝑚. Finally, 

to each edge of the graph, we assign an always-positive weight representing the amount (in US 

dollars) of the transaction. In our formalization, we allow both directed and undirected graphs.

Since the dataset represents temporal transactions, multiple interactions can happen between a 

customer and a merchant. In both our formalizations, we decided to collapse all that information 

into a single graph. In other words, if multiple transactions are present between a customer and 

a merchant, we will build a single edge between the two nodes with its weight given by the sum 

of all the transaction amounts. A graphical representation of the direct bipartite graph is shown 

in Figure 9.1:

Figure 9.1: Bipartite graph generated from the input dataset

https://www.scinapse.io/papers/614715210
https://www.scinapse.io/papers/614715210
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The bipartite graph we defined can be built using the following code:

def build_graph_bipartite(df_input, graph_type=nx.Graph()):

    df = df_input.copy()

    mapping = {x:node_id for node_id,x in enumerate(set(df["cc_num"].
values.tolist() + df["merchant"].values.tolist()))}

    df["from"] = df["cc_num"].apply(lambda x: mapping[x])

    df["to"] = df["merchant"].apply(lambda x: mapping[x])

    df = df[['from', 'to', "amt", "is_fraud"]].groupby(['from', 'to']).
agg({"is_fraud": "sum", "amt": "sum"}).reset_index()

    df["is_fraud"] = df["is_fraud"].apply(lambda x: 1 if x>0 else 0)

    G = nx.from_edgelist(df[["from", "to"]].values, create_using=graph_type)

    nx.set_edge_attributes(G, {(int(x["from"]), int(x["to"])):x["is_
fraud"] for idx, x in df[["from","to","is_fraud"]].iterrows()}, "label")

    nx.set_edge_attributes(G,{(int(x["from"]), int(x["to"])):x["amt"] for 
idx, x in df[["from","to","amt"]].iterrows()}, "weight")

    return G

The code is quite simple. To build the bipartite credit card transaction graph, we use different 

networkx functions. To go more in-depth, the operations we performed in the code are as follows:

1.	 We built a map to assign a node_id to each merchant or customer.

2.	 Multiple transactions are aggregated in a single transaction.

3.	 The networkx function, nx.from_edgelist, is used to build the networkx graph.

4.	 Two attributes (namely, weight and label) are assigned to each edge. The former  

represents the total number of transactions between the two nodes, whereas the latter 

indicates whether the transaction is genuine or fraudulent.

As we can also see from the code, we can select whether we want to build a directed or an  

undirected graph. We can build an undirected graph by calling the following function:

G_bu = build_graph_bipartite(df, nx.Graph(name="Bipartite Undirect"))))

We can instead build a direct graph by calling the following function:

G_bd = build_graph_bipartite(df, nx.DiGraph(name="Bipartite Direct"))))

The only difference is given by the second parameter we pass in the constructor.
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The tripartite approach is an extension of the previous one, also allowing the transactions to 

be represented as a vertex. While, on the one hand, this approach drastically increases network 

complexity, on the other hand, it allows extra node embeddings to be built for merchants and 

cardholders and every transaction. Formally, for this approach, we build a weighted tripartite 

graph, 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺 𝐺𝐺𝐺 𝐺𝐺𝐺 , where 𝑉𝑉 𝑉 𝑉𝑉𝑡𝑡 ∈ 𝑣𝑣𝑐𝑐 ∪ 𝑣𝑣𝑚𝑚, where each node 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐  represents a customer, 

each node 𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 represents a merchant, and each node 𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡  is a transaction. Two edges (𝑣𝑣𝑐𝑐𝑣𝑣𝑡𝑡)  
and (𝑣𝑣𝑡𝑡𝑣𝑣𝑚𝑚) are created for each transaction, 𝑣𝑣𝑡𝑡, from the customer, 𝑣𝑣𝑐𝑐, to the merchant, 𝑣𝑣𝑚𝑚.

Finally, to each edge of the graph, we assign an always-positive weight representing the amount 

(in US dollars) of the transaction. Since, in this case, we create a node for each transaction, we do 

not need to aggregate multiple transactions from a customer to a merchant. Moreover, as for the 

other approach, in our formalization, we allow both directed and undirected graphs. A graphical 

representation of the direct bipartite graph is shown in Figure 9.2:

Figure 9.2: Tripartite graph generated from the input dataset

The tripartite graph we defined can be built using the following code:

def build_graph_tripartite(df_input, graph_type=nx.Graph()):

    df = df_input.copy()

    mapping = {x:node_id for node_id,x in enumerate(set(df.index.
values.tolist() + df["cc_num"].values.tolist() + df["merchant"].values.
tolist()))}

    df["in_node"] = df["cc_num"].apply(lambda x: mapping[x])

    df["out_node"] = df["merchant"].apply(lambda x: mapping[x])

    G = nx.from_edgelist([(x["in_node"], mapping[idx]) for idx, x 
in df.iterrows()] + [(x["out_node"], mapping[idx]) for idx, x in 
df.iterrows()], create_using=graph_type)
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    nx.set_edge_attributes(G,{(x["in_node"], mapping[idx]):x["is_fraud"] 
for idx, x in df.iterrows()}, "label")

    nx.set_edge_attributes(G,{(x["out_node"], mapping[idx]):x["is_fraud"] 
for idx, x in df.iterrows()}, "label")

    nx.set_edge_attributes(G,{(x["in_node"], mapping[idx]):x["amt"] for 
idx, x in df.iterrows()}, "weight")

    nx.set_edge_attributes(G,{(x["out_node"], mapping[idx]):x["amt"] for 
idx, x in df.iterrows()}, "weight")

    return G

The code is quite simple. To build the tripartite credit card transaction graph, we use different 

networkx functions. To go more in-depth, the operations we performed in the code are as follows:

1.	 We built a map to assign a node_id to each merchant, customer, and transaction.

2.	 The networkx function, nx.from_edgelist, is used to build the networkx graph.

3.	 Two attributes (namely, weight and label) are assigned to each edge. The former  

represents the total number of transactions between the two nodes, whereas the latter 

indicates whether the transaction is genuine or fraudulent.

As we can also see from the code, we can select whether we want to build a directed or an  

undirected graph. We can build an undirected graph by calling the following function:

G_tu = build_graph_tripartite(df, nx.Graph(name="Tripartite Undirect"))

We can instead build a direct graph by calling the following function:

G_td = build_graph_tripartite(df, nx.DiGraph(name="Tripartite Direct"))

The only difference is given by the second parameter we pass in the constructor.

In the formalized graph representation that we introduced, the real transactions are represented 

as edges. According to this structure for both bipartite and tripartite graphs, the classification 

of fraudulent/genuine transactions is described as an edge classification task. In this task, the 

goal is to assign to a given edge a label (0 for genuine, 1 for fraudulent) describing whether the 

transaction the edge represents is fraudulent or genuine.

In the rest of this chapter, we use both bipartite and tripartite undirected graphs for our analysis, 

denoted by the Python variables G_bu and G_tu, respectively. We will leave to you, as an exercise, 

an extension of the analyses proposed in this chapter to direct graphs.
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We begin our analysis with a simple check to validate whether our graph is a real bipartite graph 

using the following code:

from networkx.algorithms import bipartite

all([bipartite.is_bipartite(G) for G in [G_bu,G_tu]])

As a result, we get True. This check gives us the certainty that the two graphs are actually bipartite/

tripartite graphs. Note that networkx does not have an is_tripartite check, but the constraint 

to be verified here is that a link between nodes of the same type doesn’t exist, which would apply 

to bipartite, tripartite, or any n-partite graphs.

Moreover, using the following command, we can get some basic statistics:

for G in [G_bu, G_tu]:

    print(nx.info(G))

By way of a result, we get the following:

Name: Bipartite Undirect

Type: Graph

Number of nodes: 1676

Number of edges: 201725

Average degree: 240.7220

Name: Tripartite Undirect

Type: Graph

Number of nodes: 267016

Number of edges: 530680

Average degree:   3.9749

As we can see, the two graphs differ in the number of nodes and the number of edges. The  

bipartite undirected graph has 1,676 nodes, equal to the number of customers plus the number 

of merchants, and 201,725 edges.

The tripartite undirected graph has 267,016 nodes, equal to the number of customers plus the 

number of merchants plus all the transactions. In this graph, the number of edges, as expected, is 

higher (530,680) compared to the bipartite graph. The interesting difference in this comparison is 

given by the average degree of the two graphs: the average degree of the bipartite graph is higher 

than that of the tripartite graph. This was expected, as in the tripartite graph, the connections 

are “split” by the presence of the transaction nodes. This makes the connections more “direct,” 

which increases connectivity between nodes. Therefore, the resulting average degree is lower.



Chapter 9 295

In the next section, we will describe how we can now use the transaction graphs that we generated 

to perform a more complete statistical analysis.

Network topology and community detection
In this section, we are going to analyze some graph metrics to have a clear picture of the general 

structure of the graph. We will be using networkx to compute most of the useful metrics we saw 

in Chapter 1, Getting Started with Graphs. We will try to interpret the metrics to gain insights into 

the graph.

Network topology
A good starting point for our analysis is the extraction of simple graph metrics to have a general 

understanding of the main properties of bipartite and tripartite transaction graphs.

We start by looking at the distribution of the degree for both bipartite and tripartite graphs using 

the following code:

for G in [G_bu, G_tu]:

  plt.figure(figsize=(10,10))

  degrees = pd.Series({k: v for k, v in nx.degree(G)})

  degrees.plot.hist()

  plt.yscale("log")

By way of a result, we get the following plots:

Figure 9.3: Degree distribution for bipartite (left) and tripartite (right) graphs
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From Figure 9.3, it is possible to see how the distribution of nodes reflects the average degree we 

previously saw. In greater detail, the bipartite graph has a more variegated distribution, with a 

peak of around 300. For the tripartite graph, the distribution has a big peak for degree 0, while 

the other part of the tripartite degree distribution is similar to the bipartite distribution. These 

distributions completely reflect the differences in how the two graphs were defined. Indeed, if 

bipartite graphs are made by connections from the customer to the merchant, in the tripartite 

graph, all the connections pass through the transaction nodes. Those nodes are the majority in 

the graph, and they all have a degree of 2 (an edge from a customer and an edge to a merchant). 

As a consequence, the frequency in the bin representing degree 2 is equal to the number of trans-

action nodes.

In the next subsection, we will continue our investigation by analyzing some key metrics for the 

graphs:

•	 Edge weight

•	 Node centrality

•	 Assortativity

Edge weight

1.	 We begin by computing the quantile distribution, as it provides a concise summary of the 

data by dividing the range of the edge weights into intervals of equal probability:

for G in [G_bu, G_tu]:

  allEdgesWeights = pd.Series({(d[0], d[1]): d[2]["weight"] for d in 
G.edges(data=True)})

  np.quantile(allEdgesWeights.values,[0.10,0.50,0.70,0.9])

2.	 By way of a result, we get the following:

array([  5.03 ,  58.25 ,  98.44 , 215.656])

array([  4.21,  48.51,  76.4 , 147.1 ])

3.	 We can also plot (in log scale) the distribution of edges weight, cut to the 90th percentile 

by using allEdgesWeightsFiltered.plot.hist(bins=40). The result is shown in the 

following charts:
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Figure 9.4: Edge weight distribution for bipartite (left) and tripartite (right) graphs

We can see how, due to the aggregation of the transaction having the same customer 

and merchant, the distribution of the bipartite graph is shifted to the right (high values) 

compared to the tripartite graph, where edge weights were not computed by aggregating 

multiple transactions.

Node centrality

1.	 We will now investigate the node centrality via the betweenness centrality metric. It 

measures how many shortest paths pass through a given node, giving an idea of how 

central that node is for the spreading of information inside the network. We can compute 

the distribution of node centrality by using the following command:

for G in [G_bu, G_tu]:

  plt.figure(figsize=(10,10))

  bc_distr = pd.Series(nx.betweenness_centrality(G, k=200))

  bc_distr.plot.hist()

  plt.yscale("log")
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2.	 As a result, we get the following distributions:

Figure 9.5: Betweenness centrality distribution for bipartite (left) and tripartite (right) 
graphs

As can be seen, the betweenness centrality is low for both graphs. This can be understood 

due to the large number of non-bridging nodes inside the network. Similar to what we saw 

for the degree distribution, the distribution of betweenness centrality values is different 

in the two graphs. The bipartite graph has a more variegated distribution with a mean of 

0.00072, while in the tripartite graph, the transaction nodes move the distribution values 

and lower the mean to 1.38e-05. Also, we can see that the distribution for the tripartite 

graph has a big peak, representing the transaction nodes, and the rest of the distribution 

is quite similar to the bipartite distribution.

Assortativity

1.	 We can finally compute the assortativity of the two graphs using the following code:

for G in [G_bu, G_tu]:

   print(nx.degree_pearson_correlation_coefficient(G))

2.	 By way of a result, we get the following:

-0.1377432041049189

-0.8079472914876812

Here, we can observe how both graphs have a negative assortativity, which likely shows that 

well-connected individuals associate with poor-connected individuals. For the bipartite graph, 

the value is low (-0.14), since customers who have a low degree are only connected with merchants 

who have high degrees due to the high number of incoming transactions.
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The assortativity is even lower (-0.81) for the tripartite graph. This behavior could be attributed 

to the presence of the transaction nodes, as these nodes always have a degree of 2, and they are 

linked to customers and merchants represented by highly connected nodes.

Community detection
Another interesting analysis we can perform is community detection, as communities often  

correspond to meaningful substructures in the graph, where fraudulent activities may be  

concentrated. This analysis can help to identify specific fraudulent patterns:

1.	 The code to perform community extraction is as follows:

import community

for G in [G_bu, G_tu]:

   parts = community.best_partition(G, random_state=42, 
weight='weight')

   communities = pd.Series(parts)   print(communities.value_
counts().sort_values(ascending=False))

In this code, we simply use the community library to extract the communities in the input 

graph. We then print the communities detected by the algorithms, sorted according to 

the number of nodes contained.

2.	 For the bipartite graph, we obtain the following output:

5     546

0     335

7     139

2     136

4     123

3     111

8      83

9      59

10     57

6      48

11     26

1      13

3.	 For the tripartite graph, we obtain the following output:

11     4828

3      4493
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26     4313

94     4115

8      4036

    ...

47     1160

103    1132

95      954

85      845

102     561

4.	 Due to the large number of nodes in the tripartite graph, we found 106 communities (we 

reported just a subset of them), whereas, for the bipartite graph, only 12 communities 

were found.

5.	 To have a clear picture of the tripartite graph, it is better to plot the distribution of the 

nodes contained in the different communities using the following command:

communities.value_counts().plot.hist(bins=20)

6.	 By way of a result, we get the following:

Figure 9.6: Distribution of communities’ node size
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From the diagram, it is possible to see that the peak is reached around 2,500. This means 

that more than 30 large communities have more than 2,000 nodes. From the plot, it is 

also possible to see that a few communities have fewer than 1,000 nodes and more than 

3,000 nodes.

7.	 For each set of communities detected by the algorithm, we can compute the percentage of 

fraudulent transactions. The goal of this analysis is to identify specific subgraphs where 

there is a high concentration of fraudulent transactions:

graphs = []

d = {}

for x in communities.unique():

    tmp = nx.subgraph(G, communities[communities==x].index)

    fraud_edges = sum(nx.get_edge_attributes(tmp, "label").values())

    ratio = 0 if fraud_edges == 0 else (fraud_edges/tmp.number_of_
edges())*100

    d[x] = ratio

    graphs += [tmp]

print(pd.Series(d).sort_values(ascending=False))

8.	 The code simply generates a node-induced subgraph by using the nodes contained in a  

specific community. The graph is used to compute the percentage of fraudulent trans-

actions as a ratio of the number of fraudulent edges over the number of all the edges in 

the graph.

9.	 For the bipartite graph, we will obtain the following output:

9     26.905830

10    25.482625

6     22.751323

2     21.993834

11    21.333333

3     20.470263

8     18.072289

4     16.218905

7      6.588580

0      4.963345

5      1.304983

1      0.000000
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10.	 We can also plot a node-induced subgraph detected by the community detection algorithm 

by using the following code:

gId = ...

spring_pos = nx.spring_layout(graphs[gId])

edge_colors = ["r" if x == 1 else "g" for x in nx.get_edge_
attributes(graphs[gId], 'label').values()]

nx.draw_networkx(graphs[gId], pos=spring_pos, node_color=default_
node_color, edge_color=edge_colors, with_labels=False, node_size=15)

Given a particular community index, gId, the code extracts the node-induced subgraph, 

using the node available in the gId community index, and plots the graph obtained.

11.	 For each community, we have the percentage of its fraudulent edges. To have a better 

description of the subgraph, we can plot community 10 by executing the previous line of 

code using gId=10. As a result, we get the following:

Figure 9.7: Induced subgraph of community 10 for the bipartite graph

12.	 The image of the induced subgraph allows us to better understand whether specific  

patterns are visible in the data.

13.	 Similarly, by running the above code on the tripartite graph, we obtain the following 

output:
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6      6.857728

94     6.551151

8      5.966981

1      5.870918

89     5.760271

      ... 

102    0.889680

72     0.836013

85     0.708383

60     0.503461

46     0.205170

14.	 Due to the large number of communities, we can plot the distribution of the fraudulent 

over genuine ratio with the following command:

pd.Series(d).plot.hist(bins=20)

15.	 By way of a result, we get the following:

Figure 9.8: Distribution of communities’ fraudulent/genuine edge ratio

From the diagram, we can observe that a large part of the distribution is around  

communities having a ratio of between 2 and 4. There are a few communities with a low 

ratio (<1) and with a high ratio (>5).
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16.	 Also, for the tripartite graph, we can plot community 6 (with a ratio of 6.86), made by 

1,935 nodes, by executing the previous line of code using gId=6:

Figure 9.9: Induced subgraph of community 6 for the tripartite graph

As for the bipartite use case, in this image, we can see an interesting pattern that could be used 

to perform a deeper exploration of some important graph sub-regions.

In this section, we performed some explorative tasks to better understand the graphs and their 

properties. We also gave an example describing how a community detection algorithm can be 

used to spot patterns in the data. In the next section, we will describe how the bipartite and 

tripartite graphs and their properties can be utilized by graph machine learning algorithms to 

build automatic procedures for fraud detection using supervised and unsupervised approaches.

Applying supervised and unsupervised fraud 
approaches to fraud detection
As we already discussed at the beginning of this chapter, transactions are represented by edges, 

and we then want to classify each edge in the correct class: fraudulent or genuine. The pipeline 

we will use to perform the classification task is the following:
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•	 A sampling procedure for the imbalanced task

•	 The use of an unsupervised embedding algorithm to create a feature vector for each edge

•	 The application of supervised and unsupervised machine learning algorithms to the  

feature space defined in the previous point

Dataset resampling
Since our dataset is strongly imbalanced, with fraudulent transactions representing 2.83% of 

total transactions, we need to apply some techniques to deal with unbalanced data. In this use 

case, we will apply a simple random undersampling strategy. Going into more depth, we will 

take a subsample of the majority class (genuine transactions) to match the number of samples 

of the minority class (fraudulent transactions). This is just one of the many techniques available 

in literature. It is also possible to use outlier detection algorithms, such as isolation forests, to 

detect fraudulent transactions as outliers in the data. We leave it to you, as an exercise, to extend 

the analyses using other techniques to deal with imbalanced data, such as random oversampling 

or using cost-sensitive classifiers for the classification task. Specific techniques for node and edge 

sampling that can be directly applied to the graph will be described in Chapter 13, Novel Trends 

on Graphs. Here are the steps to try this:

1.	 The code we use for random undersampling is as follows:

from sklearn.utils import resample

df_majority = df[df.is_fraud==0]

df_minority = df[df.is_fraud==1]

df_maj_dowsampled = resample(df_majority, n_samples=len(df_
minority), random_state=42)

df_downsampled = pd.concat([df_minority, df_maj_dowsampled])

G_down = build_graph_bipartite(df_downsampled, nx.Graph())

2.	 The code is straightforward. We applied the resample function of the sklearn package 

to filter the downsample function of the original data frame. We then build a graph using 

the build_graph_bipartite function defined at the beginning of the chapter. To create 

the tripartite graph, the build_graph_tripartite function should be used.

3.	 As the next step, we split the dataset into training and validation with a ratio of 80/20:

from sklearn.model_selection import train_test_split

train_edges, val_edges, train_labels, val_labels = train_test_
split(list(range(len(G_down.edges))), list(nx.get_edge_attributes(G_
down, "label").values()), test_size=0.20, random_state=42)
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edgs = list(G_down.edges)

train_graph = G_down.edge_subgraph([edgs[x] for x in train_edges]).
copy()

train_graph.add_nodes_from(list(set(G_down.nodes) - set(train_graph.
nodes)))

As before, in this case, the code is straightforward since we simply apply the train_test_

split function of the sklearn package.

Node feature generation
We can now build the feature space using the Node2Vec algorithm, as follows:

from node2vec import Node2Vec

node2vec = Node2Vec(train_graph, weight_key='weight')

model = node2vec_train.fit(window=10)

Node2Vec results (which provide each node with a vector) are then aggregated to produce the 

feature set for the edges, as described in Chapter 4, Unsupervised Graph Learning.

Different choices for the aggregation can be used, resulting in slightly different variations for 

the Edge2Vec algorithm. For instance, using the WeightedL1Embedder, the embedding can be 

obtained by:

from node2vec.edges import WeightedL1Embedder

embeddings = WeightedL1Embedder(keyed_vectors=model.wv)

The edge embedding that is obtained in this way will generate the final feature space used by 

the classifier. The specific type of node feature aggregation algorithm (WeightedL1Embedder, in 

this case) together with the various parameters used in the Node2Vec algorithm represent the 

hyperparameters of our machine learning pipeline.

Training and evaluating the model
Finally, we can train and evaluate a machine learning model using the feature set generated in 

the previous step. Here, we will use a RandomForestClassifier from the sklearn Python library, 

but of course, other choices could also be valid. Different performance metrics (namely, precision, 

recall, and F1 score) are computed on the validation test:

1.	 First, we build the training and validation datasets:

# Building training and validation sets

train_embeddings = [embeddings[str(edgs[x][0]), str(edgs[x][1])] for 
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x in train_edges]

    val_embeddings = [embeddings[str(edgs[x][0]), str(edgs[x][1])] 
for x in val_edges]

2.	 Then, we train the classifier on the training set:

rf = RandomForestClassifier(n_estimators=1000, random_state=42)

rf.fit(train_embeddings, train_labels)

3.	 Finally, we evaluate the performances on the validation set:

y_pred = rf.predict(val_embeddings)

print('Precision:', metrics.precision_score(val_labels, y_pred))

print('Recall:', metrics.recall_score(val_labels, y_pred))

print('F1-Score:', metrics.f1_score(val_labels, y_pred))

Hyperparameter tuning
As mentioned in the previous subsection, the Edge2Vec algorithm can be seen as a  

hyperparameter for the machine learning pipeline. In the following code snippet, we loop over 

some possible choices for the node feature aggregation function, to identify the best choice for 

this particular dataset. The code to perform this task is the following:

from sklearn import metrics

from sklearn.ensemble import RandomForestClassifier

from node2vec.edges import HadamardEmbedder, AverageEmbedder, 
WeightedL1Embedder, WeightedL2Embedder

classes = [HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, 
WeightedL2Embedder]

for cl in classes:

    embeddings = cl(keyed_vectors=model.wv)

    train_embeddings = [embeddings[str(edgs[x][0]), str(edgs[x][1])] for x 
in train_edges]

    val_embeddings = [embeddings[str(edgs[x][0]), str(edgs[x][1])] for x 
in val_edges]

    rf = RandomForestClassifier(n_estimators=1000, random_state=42)

    rf.fit(train_embeddings, train_labels)

    y_pred = rf.predict(val_embeddings)

    print(cl)

    print('Precision:', metrics.precision_score(val_labels, y_pred))

    print('Recall:', metrics.recall_score(val_labels, y_pred))

    print('F1-Score:', metrics.f1_score(val_labels, y_pred))
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We can apply the preceding code to both bipartite and tripartite graphs to solve the fraud detection 

task. In the following table, we report the performances for the bipartite graph:

Table 9.2: Supervised fraud edge classification performances for a bipartite graph

In the following table, we report the performances for the tripartite graph:

Table 9.3: Supervised fraud edge classification performances for a tripartite graph

In Table 9.2 and Table 9.3, we reported the classification performances obtained using bipartite 

and tripartite graphs. As we can see from the results, in terms of F1 score, precision, and recall, the 

two methods show significant differences. Since, for both graph types, Hadamard and average 

edge embedding algorithms give the most interesting results, we are going to focus our attention 

on those two.

Going into more detail, the tripartite graph has better precision compared to the bipartite graph 

(0.89 and 0.74 for the tripartite graph versus 0.73 and 0.71 for the bipartite graph). In contrast, the 

bipartite graph has a better recall (0.76 and 0.79 for the bipartite graph versus 0.29 and 0.45 for 

the tripartite graph) and F1 score (0.75 and 0.75 for the bipartite graph versus 0.44 and 0.48 for 

the tripartite graph) than the tripartite graph. We can therefore conclude that, in this specific case, 

the use of a bipartite graph could be a better choice since it achieves high performances in terms 

of F1 score and recall with a smaller graph (in terms of nodes and edges) than the tripartite graph. 
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In the context of fraud detection, it is common to prioritize recall over precision, given the  

importance of not missing the detection of any fraud, and also at the expense of more false 

positives.

Unsupervised approach to fraudulent transaction 
identification
The same approach can also be applied in unsupervised tasks using k-means. The main  

difference is that the generated feature space will not undergo a train-validation split. Indeed, 

in the following code, we will compute the Node2Vec algorithm on the entire graph generated 

following the downsampling procedure:

nod2vec_unsup = Node2Vec(G_down, weight_key='weight')

unsup_vals = nod2vec_unsup.fit(window=10)

When building the node feature vectors, we can use different Egde2Vec algorithms to run the 

k-means algorithm, as follows:

from sklearn.cluster import KMeans

classes = [HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, 
WeightedL2Embedder]

true_labels = [x for x in nx.get_edge_attributes(G_down, "label").
values()]

for cl in classes:

    embedding_edge = cl(keyed_vectors=unsup_vals.wv)

    embedding = [embedding_edge[str(x[0]), str(x[1])] for x in G_down.
edges()]

    kmeans = KMeans(2, random_state=42).fit(embedding)

    nmi = metrics.adjusted_mutual_info_score(true_labels, kmeans.labels_)

    ho = metrics.homogeneity_score(true_labels, kmeans.labels_)

    co = metrics.completeness_score(true_labels, kmeans.labels_)

    vmeasure = metrics.v_measure_score(true_labels, kmeans.labels_)

    print(cl)

    print('NMI:', nmi)

    print('Homogeneity:', ho)

    print('Completeness:', co)

    print('V-Measure:', vmeasure)
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Different steps are performed in the previous code:

1.	 For each Edge2Vec algorithm, the previously computed Node2Vec algorithm on training 

and validation sets is used to generate the feature space.

A KMeans clustering algorithm from the sklearn Python library is fitted on the feature 

set generated in the previous step. In the previous code snippet, we assumed k=2 as an  

example, although in general, the number of clusters is one hyperparameter of the  

modeling pipeline and is to be varied and optimized.

2.	 Different performance metrics are used – namely, adjusted mutual information (MNI), 

homogeneity, completeness, and v-measure scores.

We can apply the code to both bipartite and tripartite graphs to solve the fraud detection task 

using the unsupervised algorithm. In the following table, we report the performances for the 

bipartite graph:

Table 9.4: Unsupervised fraud edge classification performances for the bipartite graph

In the following table, we report the performances for the tripartite graph:

Table 9.5: Unsupervised fraud edge classification performances for the tripartite graph
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In Table 9.4 and Table 9.5, we reported the classification performances obtained using bipartite 

and tripartite graphs with the application of an unsupervised algorithm. As we can see from 

the results, the two methods show significant differences. It is also worth noticing that, in this 

case, the performances obtained with the Hadamard embedding algorithm clearly outperform 

all other approaches.

As shown by the tables, for this task, the performances obtained with the tripartite graph  

outstrip those obtained with the bipartite graph. In the unsupervised case, we can see how the 

introduction of the transaction nodes improves the overall performance. This additional layer of  

information may enable more accurate embeddings. Thus, in the unsupervised setting, for this  

specific use case and using as a reference the results obtained in Table 9.4 and Table 9.5, the use of the  

tripartite graph could be a better choice since it enables the attainment of superior performances 

compared with the bipartite graph.

Additional resources
On Kaggle, you can find further resources to analyze and explore datasets with financial  

transactions in which you can similarly apply the frameworks learned here. In particular, we 

suggest you investigate two other datasets:

The first one is the Czech Bank’s Financial Analysis dataset, available at https://github.com/

Kusainov/czech-banking-fin-analysis. This dataset came from an actual Czech bank in 1999, 

for the period covering 1993–1998. The data pertaining to clients and their accounts consists of 

directed relations. The dataset does not come with labels on the transactions. It is therefore not 

possible to train a fraud detection engine using supervised machine learning techniques, whereas 

the unsupervised techniques would still apply.

The second dataset is the paysim1 dataset, available at https://www.kaggle.com/datasets/

ealaxi/paysim1. This dataset comprises simulated mobile money transactions based on a  

sample of real transactions extracted from one month of financial logs from a mobile money 

service implemented in an African country. The original logs were provided by a multinational 

company that is the provider of a mobile financial service and is currently running in more than 14 

countries across the globe. This dataset also contains labels on fraudulent/genuine transactions.

Moreover, it is worth pointing out that there can be different types of fraud, depending on 

the relationship between the fraudster and the entity being defruaded. In general, frauds are  

generally divided into:

https://github.com/Kusainov/czech-banking-fin-analysis
https://github.com/Kusainov/czech-banking-fin-analysis
https://www.kaggle.com/datasets/ealaxi/paysim1
https://www.kaggle.com/datasets/ealaxi/paysim1
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1.	 First-party fraud, where the fraudster uses their identity and/or fabricated information 

to deceive a business and obtain personal gain. Some examples of first-party fraud are 

making unauthorized purchases with stolen or false credit cards, or providing false  

records to obtain a loan.

2.	 Second-party fraud, where a person internal to an organization or a business colludes 

with an external party in order to pursue an advantage against the organization or the 

business itself. The internal person generally abuses their position, knowledge, and/or 

access to internal information in order to perpetuate a personal gain.

3.	 Third-party fraud, where an external entity, unrelated to a business or its customers, 

commits fraud at the expense of either of the two. Some examples of third-party fraud 

are phishing scams, counterfeit goods, or identity theft.

Each type of fraud may require a different set of controls and measures, as well as specific  

analytic algorithms. Indeed, the transaction dataset and the analysis presented in the chapter 

are more suited to address first-party frauds as, in general, models to spot this type of fraud  

focus on identifying spending patterns to then capture transactions dissimilar from the  

expected behavior. Graph analytics is generally very effective in clustering users, merchants, 

and communities to provide an effective implementation of behavior analytics. On the 

other hand, second-party fraud can be identified with the implementation of monitoring  

employee behavior, as well as compliance checks. Graph analytics can indeed be useful for 

these use cases. Similar to the first-party models, employee behavior can also be analyzed using 

graph machine learning, although the dataset may need to encode a number of other sources of  

information besides transactional data. From a compliance standpoint, process mining  

techniques that still rely on a graph representation of the various procedural steps/ 

pathways can be effective in identifying fraudulent behavior or non-compliant processes.  

Finally, third-party fraud, especially in the form of phishing attacks, can also be addressed using 

graph machine learning. In this context, understanding the network from which the phishing 

attack comes as well as the URLs being used (which can also benefit from a graph representation) 

can be critical for building an effective phishing classifier.

Summary
In this chapter, we described how a classical fraud detection task can be described as a graph 

problem and how the techniques described in the previous chapters can be used to tackle the 

problem. Going into more detail, we introduced the dataset we used and described the procedure 

to transform the transactional data into two types of graph – namely, bipartite and tripartite 

undirected graphs.
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We then computed local (along with their distributions) and global metrics for both graphs, 

comparing the results. Moreover, a community detection algorithm was applied to the graphs in 

order to spot and plot specific regions of the transaction graph where the density of fraudulent 

transactions is higher compared to the other communities.

Finally, we solved the fraud detection problem using supervised and unsupervised algorithms, 

comparing the performance of the bipartite and tripartite graphs. As the first step, since the 

problem was unbalanced with a higher presence of genuine transactions, we performed  

simple downsampling. We then applied different Edge2Vec algorithms in combination with a 

random forest for the supervised task, and k-means for the unsupervised task, achieving good  

classification performances.

This chapter concludes the series of examples that are used to show how graph machine learning 

algorithms can be applied to problems belonging to different domains, such as social network 

analysis, text analytics, and credit card transaction analysis.

In the next chapter, we will describe some practical uses for graph databases and graph processing 

engines that are useful for scaling out the analysis to large graphs.





10
Building a Data-Driven Graph-
Powered Application

So far, we have provided you with both theoretical and practical ideas to allow you to design 

and implement machine learning models that leverage graph structures. Besides designing the 

algorithm, it is often very important to embed the modeling/analytical pipeline into a robust and 

reliable end-to-end application. This is especially true in industrial applications, where the goal is 

usually to design and implement production systems that support data-driven decisions and/or 

provide users with timely information. However, creating a data-driven application that resorts 

to graph representation/modeling is indeed a challenging task that requires a proper design that 

is a lot more complicated than simply importing networkx. This chapter aims to provide you with 

a general overview of the key concepts and frameworks that are used when building graph-based, 

scalable, data-driven applications.

We will start by providing an overview of the so-called Lambda architectures, which provide a 

framework to structure scalable applications that require large-scale processing and real-time 

updates. We will then continue by applying this framework in the context of graph-powered  

applications, that is, applications that leverage graph structures using techniques such as the ones 

described in this book. We will describe their two main analytical components: graph processing 

engines and graph querying engines. We’ll present some of the technologies used, both in shared 

memory machines and distributed memory machines, outlining the similarities and differences. 

The following topics will be covered in this chapter:

•	 Overview of Lambda architectures

•	 Lambda architectures for graph-powered applications
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•	 Technologies and examples of graph processing engines

•	 Graph querying engines and graph databases

Technical requirements
All the code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter10. Please refer to the Practical exercises section in 

Chapter 1, Getting Started with Graphs, for guidance on how to set up the environment to run the 

examples in this chapter, either using Poetry, pip, or Docker.

Overview of Lambda architecture
In recent years, great focus has been given to designing scalable architectures that will allow, on 

the one hand, the processing of a large amount of data, and, on the other, providing answers/alerts/

actions in real time, using the latest available information. Additionally, these systems need to also be 

able to scale out seamlessly to a larger number of users or a larger amount of data by increasing 

resources horizontally (adding more servers) or vertically (using servers that are more powerful).

Lambda architecture is a particular data-processing architecture that is designed to process 

massive quantities of data and ensure large throughput in a very efficient manner, preserving 

reduced latency and ensuring fault tolerance and negligible errors.

The Lambda architecture is composed of three different layers:

•	 The batch layer: This layer sits on top of the storage system – either local or  

distributed – and can handle and store all historical data, as well as performing online 

analytical processing (OLAP) computation on the entire dataset. New data is continuously  

ingested and stored, as it would be traditionally done in data warehouse systems. Large-

scale processing is generally achieved via massively parallel jobs, which aim to produce 

aggregation, structuring, and computation of relevant information. In the context of 

machine learning, model training that relies on historical information is generally done 

in this layer, thus producing a trained model to be used either in a batch prediction job 

or in real-time execution.

•	 The speed layer: This is a low-latency layer that allows the real-time processing of the 

information to provide timely updates and information. It is generally fed by a streaming 

process, usually involving fast computation that does not require long computational 

time or load. It produces an output that is integrated with the data generated by the batch 

layer in (near) real time, providing support for online transaction processing (OLTP) 

operations. 

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter10
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter10
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The speed layer might also very well use some outputs of the OLAP computations, such 

as a trained model. Oftentimes, applications that use machine learning modeling in real 

time (for example, fraud detection engines used in credit card transactions) embed trained 

models in their speed layers that provide prompt predictions and trigger real-time alerts 

of potential fraud. Libraries may operate at an event level (such as Apache Storm) or over 

mini-batches (such as Spark Streaming), providing, depending on the use case, slightly 

different requirements for latency, fault tolerance, and computational speed.

•	 The serving layer: The serving layer is responsible for organizing, structuring, and  

indexing information in order to allow the fast retrieval of data coming from the batch 

and speed layers. The serving layer thus integrates the outputs of the batch layer with 

the most updated and real-time information of the speed layer in order to deliver to 

the user a unified and coherent view of the data. A serving layer can be composed of 

a persistence layer that integrates both historical aggregation and real-time updates. 

This component may be based on some kind of database, which can be relational or not,  

conveniently indexed in order to reduce latency and allow the fast retrieval of relevant data. The  

information is generally exposed to the user via either a direct connection to the database 

and is accessible using a specific domain query language, such as SQL, or via dedicated 

services, such as RESTful API servers (which in Python can be easily implemented using 

several frameworks, such as flask, fastapi, or turbogear), which provide the data via 

specifically designed endpoints.

The following diagram illustrates the Lambda architecture with these three layers:

Figure 10.1: Functional diagram for an application based on Lambda architecture
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All the service layers (batch, real-time, and serving) interact with the data layers, where all data 

– both operational and historical – are stored. Batch and real-time layers generally perform both 

read and write operations on the data, while the serving layers generally mostly read from the 

data layers.

Lambda architectures have several benefits that have motivated and promoted their use,  

especially in the context of big data applications. In the following bullet points, we list some of 

the main pros of Lambda architectures:

•	 No server management: The Lambda architectural design pattern typically abstracts 

the functional layers and does not require installing, maintaining, or administering any 

software/infrastructure

•	 Flexible scaling: The application can be either automatically scaled or scaled by controlling 

the number of processing units that are used in batch layers (for example, computing 

nodes) and/or in speed layers (for example, Kafka brokers) separately

•	 Automated high availability: It represents a serverless design for which we already have 

built-in availability and fault tolerance

•	 Business agility: Reacts in real time to changing business/market scenarios

Although very powerful and flexible, Lambda architectures come with some limitations mainly 

due to the presence of two interconnected processing flows: the batch layer and the speed layer. 

This may require developers to build and maintain separate code bases for batch and stream 

processes, resulting in more complexity and code overhead, which may lead to harder debugging, 

possible misalignment, and bug promotion.

In the next section, we will show you how to implement a Lambda architecture for graph-powered 

applications. In particular, we will describe the main components and review the most common 

technologies.

So far, we have provided a short overview of Lambda architectures and their basic 

building blocks. For more details on how to design scalable architectures and the 

most commonly used architectural patterns, please refer to the book Data Lake for 

Enterprises, 2017, by Tomcy John and Pankaj Misra. 
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Lambda architectures for graph-powered 
applications
When dealing with scalable, graph-powered, data-driven applications, the design of Lambda 

architectures is also reflected in the separation of functionalities between two crucial components 

of the analytical pipeline:

•	 The graph processing engine executes computations on the graph structure in order to 

extract features (such as embeddings), compute statistics (such as degree distributions, 

the number of edges, and cliques), compute metrics and key performance indicators 

(KPIs) (such as centrality measures and clustering coefficients), and identify relevant 

subgraphs (for example, communities) that often require OLAP.

•	 The graph querying engine allows us to persist network data (usually done via a graph 

database) and provides fast information retrieval and efficient querying and graph  

traversal (usually via graph querying languages). All of the information is already persisted 

in some data storage (that may or may not be in memory) and no further computation 

is required apart from (possibly) some final aggregation results, for which indexing is 

crucial to achieving high performance and low latency.

The following diagram illustrates this:

Figure 10.2: Graph-based architecture, with the main components also reflected in a Lambda 
architectural pattern

Graph processing engines sit on top of batch layers and produce outputs that may be stored and 

indexed in appropriate graph databases. These databases are the backend of graph querying 

engines, which allow relevant information to be easily and quickly retrieved, representing the 

operational views used by the serving layer. 
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Depending on the use cases and/or the size of the graph, it often makes sense to run both the 

graph processing engine and the graph query engine on top of the same infrastructure.

Instead of storing the graph on a low-level storage layer (for example, the filesystem, Hadoop 

Distributed File System, or S3), there are graph database options that could support both 

OLAP and OLTP. These provide, at the same time, a backend persistence layer where historical  

information processed by batch layers, together with real-time updates from the speed layer, is 

stored, and information that needs to be queried efficiently by the serving layer.

As compared to other use cases, this condition is indeed quite peculiar for graph-powered,  

data-driven applications. Historical data often provides a topology on top of which new, real-time 

updates and OLAP outputs (KPIs, data aggregations, embeddings, communities, and so on) can 

be stored. This data structure also represents the information that is later queried by the serving 

layer that traverses the enriched graph.

In the next sections, we will be discussing graph querying engines and the graph processing 

engine in more detail.

Graph querying engine
In the last decade, due to the large diffusion of non-structured data, NoSQL databases have 

started to gain considerable attention and importance. Among them, graph databases are indeed 

extremely powerful for storing information based on a relation between entities. Indeed, in many 

applications, data can naturally be seen as entities, associated with metadata in the form of node 

properties, connected by edges that also have properties that further describe the relationship 

between entities.

Examples of graph databases are libraries or tools such as Neo4j, OrientDB, ArangoDB,  

Amazon Neptune, Cassandra, JanusGraph (previously named TitanDB), Google Spanner Graph, 

and Microsoft Cosmos DB. In the following sections, we will briefly describe some of them, to-

gether with the languages that allow us to query and traverse the underlying graphs, which are 

called graph querying languages.

Neo4j
At the time of writing, Neo4j (https://neo4j.com/) is one of the most common graph databases 

around, with a large community supporting its use and adoption. It features two editions:

•	 Community Edition, released under a GPL v3 license, allows users/developers to openly 

include Neo4j in their applications

https://neo4j.com/
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•	 Enterprise Edition, designed for commercial deployments where scale and availability 

are crucial

With its enterprise edition, Neo4j can scale out to fairly large datasets via sharding, that is,  

distributing data over multiple nodes and parallelizing queries and aggregation over multiple 

instances of the database. Additionally, the Neo4j federation also allows querying smaller sepa-

rated graphs (sometimes even with a different schema) as if they were one large graph.

Some of Neo4j’s strong points are its flexibility (which allows the schema to be evolved) and its 

user-friendliness. In particular, many operations in Neo4j can be done through its query language, 

which is very intuitive and easy to learn: Cypher. Cypher can just be seen as the counterpart of 

SQL for graph databases.

Testing out Neo4j and Cypher is extremely easy. You could install the Community Edition (via 

Docker; see below) or play around with SaaS services, such as the online sandbox version (https://

neo4j.com/sandbox/) or the free tier of Neo4j Aura (https://neo4j.com/free-graph-database/).

In the following, we will use the Docker installation. To start a single instance of the community 

edition of Neo4j, you can use the following Docker command:

docker run --rm --detach --name neo4j \

              --publish=7474:7474 --publish=7687:7687 \

              --user="$(id -u):$(id -g)" \

              --env NEO4J_AUTH=none \

              --env NEO4J_PLUGINS='["graph-data-science"]' \

              neo4j:5.26.0

Once the service is up and running, you can log in to the UI by opening the link http://

localhost:7474 in one of your browsers and supplying the username neo4j and password neo5j. 

At this point, you are ready to play with your Neo4j database.

It’s noteworthy that Graph Query Language (GQL) has recently been published as 

a new ISO standard designed for property graphs. GQL is the first new ISO database 

language since SQL’s introduction in 1987 and aims to standardize graph querying 

across different platforms. Cypher has significantly influenced GQL’s development, 

providing a familiar foundation for those already acquainted with Cypher. However, 

GQL syntax and Cypher’s are not that different, and, as noted in the GQL announce-

ment, Cypher will be supported for many years to come.

https://neo4j.com/sandbox/
https://neo4j.com/sandbox/
https://neo4j.com/free-graph-database/
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In the repository attached to the book, we provide a Cypher query to create the Movie dataset. 

The Movie dataset is made up of 38 movies and 133 people that acted in, directed, wrote, reviewed, 

and produced them. Both the on-premises version and the online version have a user-friendly UI 

that allows the user to query and visualize the data (see Figure 10.3). We start by listing 10 actors 

in the Movie dataset, by simply querying the following:

MATCH (p: Person) RETURN p LIMIT 10

But let’s now use the information about relations between data points. We see that one of the 

actors that appears in the database is Keanu Reeves. We may wonder who all the actors that 

he has acted with in the listed movies are. This information can be easily retrieved using the 

following query:

MATCH (k: Person {name:"Keanu Reeves"})-[:ACTED_IN]-(m: Movie)-[:ACTED_
IN]-(a: Person) RETURN k, m, a

As shown in the following figure, the query intuitively and graphically indicates in its syntax how 

to traverse the graph by declaring the path we are interested in:

Figure 10.3: Example of Neo4j UI with the Cypher query to retrieve the co-actors of Keanu 
Reeves in the Movie dataset
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Neo4j also provides bindings with several programming languages, such as Python, JavaScript, 

Java, Go, Spring, and .NET. For Python in particular, there are several libraries that implement 

connections with Neo4j, such as neo4j and graphdatascience, that are officially supported by 

Neo4j Inc. These libraries provide direct connections to the database via a binary protocol. When 

using the neo4j client library, creating a connection to the database and running a query is just 

a matter of a few lines of code:

from neo4j import GraphDatabase

driver = GraphDatabase("bolt://localhost:7687", "my-user", "my-password")

def run_query(tx, query):

    return tx.run(query)

with driver.session() as session:

    session.write_transaction(run_query, query)

A query could be any Cypher query, for instance, the one written previously to retrieve the co-actors 

of Keanu Reeves. In the notebook provided in the repository, we show how to create and query 

the Movie dataset programmatically using Python.

On the other hand, graphdatascience provides a higher-level API that abstracts away the need 

to instantiate the low-level sessions and transactions:

from graphdatascience import GraphDataScience

uri = f"bolt://localhost:7687"

gds = GraphDataScience(uri, auth=("neo4j", "neo5j"))

gds.run_cypher(query)

As we will see in the following, besides a higher-level API, the graphdatascience also provides 

intuitive APIs to interact with the Graph Data Science engine to perform various analytical  

computations on the graph.

JanusGraph – a graph database to scale out to very large 
datasets
Neo4j is an extremely great piece of software, unbeatable when you want to get things done 

quickly, thanks to its intuitive interface and query language. Neo4j is indeed a graph database 

that’s suitable for production, particularly in its Enterprise edition, but it’s especially good in 

MVPs when agility is crucial.
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Indeed, when the volume of the data increases substantially, the Community Edition of Neo4j 

is likely to not be suitable anymore, and you should either consider switching to the Enterprise 

edition or other graph database options. Once again, this should be done only when the use case 

requirements start to hit the limitation of Neo4j Community Edition, as you need to evolve from 

the MVP initial requirements.

Besides other commercial alternatives, such as Amazon Neptune and Azure Cosmos DB, some open 

source options are also available. Among them, we believe it is worth mentioning JanusGraph 

(https://janusgraph.org/), which is a particularly interesting piece of software. JanusGraph is 

the evolution of a previously open source project that was called TitanDB and is now an official 

project under the Linux Foundation, also featuring support from top players in the tech landscape, 

such as IBM, Google, Hortonworks, Amazon, Expero, and Grakn Labs.

JanusGraph is a scalable graph database designed for storing and querying graphs distributed 

across a multi-machine cluster with hundreds of billions of vertices and edges. As a matter of 

fact, JanusGraph does not have a storage layer on its own, but it is rather a component, written 

in Java, that sits on top of other data storage layers, such as the following:

•	 Google Cloud Bigtable (https://cloud.google.com/bigtable), which is the cloud  

version of the proprietary data storage system built on Google File System, designed to 

scale a massive amount of data distributed across data centers (for more information, 

refer to Bigtable: A Distributed Storage System for Structured Data, Fay Chang et al., 2006)

•	 Apache HBase (https://hbase.apache.org/), which is a non-relational database that 

features Bigtable capabilities on top of Hadoop and HDFS, thus ensuring similar scalability 

and fault tolerance

•	 Apache Cassandra (https://cassandra.apache.org/), which is an open source  

distributed NoSQL database that allows handling a large amount of data, spanning  

multiple data centers

•	 ScyllaDB (https://www.scylladb.com/), which is specifically designed for real-time 

applications, and is compatible with Apache Cassandra while achieving significantly 

higher throughputs and lower latencies

Depending on its storage backend, JanusGraph inherits its various features, such as scalability, 

high availability, and fault tolerance, from scalable solutions, abstracting a graph view on top of 

them. Note that when running on top of eventually consistent databases, users should expect 

similar slack requirements on consistency for JanusGraph as well.

https://janusgraph.org/
https://cloud.google.com/bigtable
https://hbase.apache.org/
https://cassandra.apache.org/
https://www.scylladb.com/
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With its integration with ScyllaDB, JanusGraph handles extremely fast, scalable, and high-through-

put applications.  JanusGraph also integrates indexing layers that can be based on Apache Lucene, 

Apache Solr, and Elasticsearch in order to allow even faster information retrieval and search 

functionalities within the graph.

The usage of highly distributed backends together with indexing layers allows JanusGraph to scale 

to enormous graphs, with hundreds of billions of nodes and edges. This allows it to handle the 

so-called supernodes very efficiently. These are nodes that have an extremely large degree, which 

often arises in real-world applications (remember that a very famous model for real networks 

is the Barabasi-Albert model, based on preferential attachments, which makes hubs naturally 

emerge within the graph).

In large graphs, supernodes are often potential bottlenecks of the application, especially when 

the business logic requires traversing the graph passing through them. Having properties (such 

as timestamps or similarity metrics computed and updated regularly) that can help with rapidly 

filtering only the relevant edges during a graph traversal can speed up the process significantly 

and achieve better performance.

Similarly to what has been done for Neo4j, for JanusGraph we can easily start an instance of the 

database using Docker with the following command:

docker run --rm --detach --name janusgraph \

              --publish=8182:8182 \

              Janusgraph/janusgraph:1.1.0

Once the JanusGraph server is running you can start to interact and play with it. JanusGraph ex-

poses a standard API to query and traverse the graph via the Apache TinkerPop library (https://

tinkerpop.apache.org/), which is an open source, vendor-agnostic graph computing framework. 

Similarly to GQL described earlier, TinkerPop also provides a standard interface for querying and 

analyzing the underlying graph using the Gremlin graph traversal language. Using a standard 

querying engine can allow you to create application layers that can seamlessly integrate with 

the various compatible graph database systems. They allow you to build standard serving layers 

that do not depend on the backend technology, giving you the freedom to choose/change the 

appropriate graph technology for your application depending on your actual needs or different 

environments (e.g. customers having different technological stacks), also avoiding a vendor lock-

in to some extent.

Besides Java connectors, Gremlin also has direct Python bindings thanks to the gremlinpython 

library, which allows Python applications to connect to and traverse graphs.

https://tinkerpop.apache.org/
https://tinkerpop.apache.org/
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In the notebook provided in the repository, we show you how to use and interact with JanusGraph 

using Gremlin.

First of all, we need to connect to the database using the following code snippet:

from gremlin_python.driver.driver_remote_connection import 
DriverRemoteConnection

from gremlin_python.driver.serializer import GraphSONSerializersV3d0

connection = DriverRemoteConnection(

    'ws://localhost:8182/gremlin', 'g',

    message_serializer=GraphSONSerializersV3d0())

)

Once the connection is created, we can then instantiate the GraphTraversalSource object, which 

is the basis for all Gremlin traversals, and bind it to the connection we just created:

from gremlin_python.structure.graph import Graph

from gremlin_python.process.graph_traversal import __

graph = Graph()

g = graph.traversal().withRemote(connection)

Once GraphTraversalSource is instantiated, we can reuse it across the application to query the 

graph database.

Using Gremlin, we can build a traversal that creates a node with a given label (here, 'student') 

and some properties (e.g. the name and their GPA):

g.addV('student')\

  .property('name', 'Jeffery')\

  .property('GPA', 4.0).next()

Note that at the end, we use next() since all Gremlin queries have lazy computation, which are 

first built and then executed. Multiple queries can also be chained together and different elements 

of the chain can be labeled:

g\

  .addV('student')\

    .property('name', 'Claire')\

    .property('GPA', 3.9).as_("n1")\

  .addV('student')\

    .property('name', 'Lisa')\
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    .property('GPA', 3.6).as_("n2")\

  .addE("FRIEND_OF")\

    .from_("n1").to("n2")\

    .property("since", "2014")

  .iterate()

This query will both create the two nodes and the edge between them. Using these concepts, in 

the notebook attached we provide utility functions to create a graph starting from a list of nodes 

and edges. We then use these utilities to import in JanusGraph both the Karate Club network (dis-

cussed in Chapter 1, Getting Started with Graphs) and the Movie dataset used in the previous section.

Once the Movie dataset is imported, we can then re-write the Cypher query we used previously 

to find all the co-actors of Keanu Reeves using Gremlin:

co_actors = g.V()\

  .has('Person', 'name', 'KeanuReeves')\

  .out("ACTED_IN")\

  .in("ACTED_IN")\

  .values("name").dedup().to_list()

As can be seen in the preceding code, Gremlin is a functional language whereby operators are 

grouped together to form path-like expressions.

Now that we have stored the information in a graph database that can be retrieved using querying 

engines, it is time to process the data. The next subsection will present the options for processing 

and analyzing graphs by implementing a graph processing engine.

Graph processing engines
To select the right technology for a graph processing engine, it is crucial to estimate the size in 

memory of the network compared to the capacity of the target architecture. You can start by using 

simple frameworks that allow fast prototyping during the first phases of a project when the goal 

is to quickly build a minimum viable product (MVP).

Such frameworks can then be substituted for more advanced tools later on when performance 

and scalability become more crucial. A microservice modular approach and proper structuring of 

these components will allow the switching of technologies/libraries independently from the rest 

of the application to target specific issues, which will also guide the choice of the backend stack.
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Graph processing engines require information for whole graphs to be accessed quickly, such 

as having all of the graph in memory, and, depending on the context, you may need distributed 

architectures. As we saw in Chapter 1, Getting Started with Graphs, networkx is a great example of a 

library for building a graph processing engine when dealing with relatively small datasets. When 

datasets get larger but can still fit in single servers or shared memory machines, other libraries 

may help to reduce computational time. As seen in Chapter 1, Getting Started with Graphs, using 

libraries other than networkx where graph algorithms are implemented in more performant  

languages, such as C++ or Julia, may speed up the computation by more than two orders of 

magnitude.

However, there are cases where datasets grow so much that it is no longer technologically or  

economically viable to use shared memory machines of increasing capacity (fat nodes). In 

such cases, it is rather necessary to distribute the data on clusters of tens or hundreds of  

computing nodes, allowing horizontal scaling. The most popular frameworks that can support a graph  

processing engine in these cases are the following:

•	 Apache Spark GraphX, which is the module of the Spark library that deals with 

graph structures (https://spark.apache.org/graphx). It involves a distributed  

representation of the graph using resilient distributed datasets (RDDs) for both vertices 

and edges, or encoding the information using the Spark DataFrame API, resulting in the  

so-called GraphFrames that provide a more type-safe and structured interface. The graph  

repartition throughout the computing nodes can be done either with an edge-cut strategy, which  

logically corresponds to dividing the nodes among multiple machines, or a vertex-cut 

strategy, which logically corresponds to assigning edges to different machines and  

allowing vertices to span multiple machines. Although written in Scala, GraphX has 

wrappers that can be used with both R and Python. GraphX already comes with some 

algorithms implemented, such as PageRank, connected components, and triangle counting. 

There are also other libraries that can be used on top of GraphX for other algorithms, such 

as SparklingGraph, which implements more centrality measures.

•	 Neo4j Graph Data Science (GDS), a high-performance graph analytics engine that  

provides a broad set of graph algorithms, ML pipelines, and enterprise support. GDS is 

optimized for Neo4j’s native graph storage, allowing scalable analysis of large networks in 

use cases such as fraud detection, recommendations, and supply chain optimization. 

In the attached notebooks, we show how the Neo4j Graph Data Science engine can be 

leveraged by using the graphdatascience Python library and perform an analysis (e.g., 

centrality computation) of the Cora dataset.

https://spark.apache.org/graphx


Chapter 10 329

•	 Amazon Neptune Analytics is a powerful graph processing engine optimized for  

large-scale graph analysis for fast insights. It integrates well within the AWS  

ecosystem, making it easy for users already on AWS to get started without needing additional  

approvals. Neptune supports optimized graph algorithms and low-latency graph  

queries. The ease of integration makes it a great choice for enterprises using AWS services. 

In summary, Neptune Analytics offers a seamless and scalable graph analytics solution 

within the AWS cloud environment.

When we consider scale-out to a distributed ecosystem, we should always keep in mind that the 

available choice for algorithms is significantly smaller than in a shared machine context. This is 

generally due to two reasons:

•	 First, implementing algorithms in a distributed way is a lot more complex than in a shared 

machine due to communication among nodes, which also reduces the overall efficiency

•	 Secondly, and more importantly, one fundamental mantra of big data analytics is that 

only algorithms that (nearly) scale linearly with the number of data points should be 

implemented in order to ensure the horizontal scalability of the solution, by increasing 

the computational nodes as the dataset increases

In this respect, GraphX and Neo4j GDS also allow you to define scalable, vertex-centric, iterative 

algorithms using standard interfaces based on Pregel, which can be seen as a sort of equivalent of 

iterative map-reduce operations for graphs (actually, iterative map-reduce operations applied to 

triplet node-edge-node instances). A Pregel computation is composed of a sequence of iterations, 

each called a superstep, each involving a node and its neighbors.

In the first version of this book, we mentioned Apache Giraph, which is an  

iterative graph processing system built for high scalability (https://giraph.

apache.org/). It was developed by Facebook to analyze the social graph formed 

by users and their connections and is built on top of the Hadoop ecosystem for  

unleashing the potential of structured datasets at a massive scale. Giraph is natively 

written in Java and, similarly to GraphX, also provides a scalable implementation 

for some basic graph algorithms, such as PageRank and shortest path. However, it is 

important to note that Apache Giraph has been retired due to inactivity as of 2023. 

Therefore, it is no longer recommended for current production applications.

https://giraph.apache.org/
https://giraph.apache.org/
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During the superstep, S, a user-defined function is applied for each vertex, V. This function takes 

the messages sent to V in superstep S – 1 as input and modifies the state of V and its outgoing edges. 

This function represents the mapping stage, which can be easily parallelized. Besides computing 

the new states of V, the function also sends messages to other vertices connected to V, which will 

receive this information at superstep S + 1. Messages are typically sent along outgoing edges, but 

a message may be sent to any vertex whose identifier is known. In Figure 10.4, we show a sketch 

of what a Pregel algorithm would look like when computing the maximum value over a network:

Figure 10.4: Example of calculating a maximum value over a node property using Pregel

By using Pregel, you can easily implement other algorithms, such as PageRank or connected  

components, in a very efficient and general way, or even implement node embeddings’ parallel 

variants (for an example, see Distributed-Memory Vertex-Centric Network Embedding for Large-Scale 

Graphs, Riazi and Norris, 2020).

For further details on this algorithm, please refer to the original paper, Pregel: A System 

for Large-Scale Graph Processing, written by Malewicz et al. in 2010.
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Selecting the right technology
Neo4j or GraphX? This is a question that often gets asked. However, as we have described briefly, 

the two pieces of software are not really competitors, but they rather target different needs. Neo4j, 

Neptune, JanusGraph, and CosmoDB allow us to store information in a graph-like structure and 

query the data, whereas GraphX, Neo4j Graph Data Science, and Amazon Neptune Analytics 

make it possible to analytically process a graph (especially for large graph dimensions). Although 

you could also use Neo4j as a processing engine and GraphX could also be used as an in-memory 

stored graph, this approach should be discouraged due to performance limitations, scalability 

concerns, and mismatched feature sets.

Graph processing engines usually compute KPIs that get stored in the graph database  

layers (potentially indexed such that querying and sorting become efficient) for later use. Thus,  

technologies such as GraphX are not competing with graph databases such as Neo4j, and they 

can very well co-exist within the same application to serve different purposes. As we stressed 

in the introduction, even in MVPs and at early stages, it is best to separate the two components, 

the graph processing engine and the graph querying engine, and use appropriate technologies for 

each of them.

Simple and easy-to-use libraries and tools do exist in both cases and we strongly encourage you to 

use them wisely in order to build a solid and reliable application that can be scaled out seamlessly.

Summary
In this section, we have provided you with the basic concepts of how to design, implement, and 

deploy data-driven applications that resort to graph modeling and leverage graph structures. We 

have highlighted the importance of a modular approach, which is usually the key to seamlessly 

scaling any data-driven use case from early-stage MVPs to production systems that can handle 

a large amount of data and large computational performances.

We have outlined the main architectural pattern, which should provide you with a guide when 

designing the backbone structure of your data-driven applications. We then continued by  

describing the main components that are the basis of graph-powered applications: graph processing 

engines, graph databases, and graph querying languages. For each component, we have provided an 

overview of the most common tools and libraries, with practical examples that will help you to 

build and implement your solutions. You should thus have by now a good overview of what the 

main technologies out there are and what they should be used for.
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In the next chapter, we will explore recent advancements and emerging research trends in temporal 

graph machine learning. Specifically, we will discuss cutting-edge techniques (such as temporal 

graph neural networks) and applications. We will also highlight practical examples and potential 

use cases, drawing insights from the latest scientific literature.



Part 4 
Advanced topics in 

Graph Machine Learning
In this part, will learn about new trends in graph machine learning, beginning with the new trends 

and moving to dynamic temporal graph modeling. It ends with an analysis of the connection 

between graph methods and large language models (LLMs), highlighting cutting-edge research 

and future opportunities in structured data and deep learning.

This part comprises the following chapters:

•	 Chapter 11, Temporal Graph Machine Learning

•	 Chapter 12, GraphML and LLMs

•	 Chapter 13, Novel Trends on Graphs





11
Temporal Graph Machine 
Learning
In the ever-evolving landscape of data science and machine learning, the study of temporal 

graphs has emerged as a crucial field with widespread applications. Temporal graphs provide a  

dynamic representation of relationships and interactions between entities over time, offering a 

more realistic and nuanced perspective than traditional static graphs.

This chapter explores the fundamental concepts of temporal graphs, delving into their  

definitions, properties, and common applications in various domains. We will explore the  

definition of dynamic graphs and why they are needed. We will see common problems that can be  

modeled in the framework of dynamic graphs and we will explore several machine learning  

algorithms that have been developed for solving such problems, including temporal graph neural 

networks.

The following topics will be covered in this chapter:

•	 The definition of dynamic graphs

•	 Common problems that can be modeled with temporal graphs

•	 Embedding dynamic graphs

•	 A general taxonomy to navigate among temporal graph machine learning algorithms

•	 Hands-on temporal graphs

Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter11. Please refer to the Practical exercises section of 

Chapter 1, Getting Started with Graphs, for guidance on how to set up the environment to run the 

examples in this chapter, using either Poetry, pip, or Docker.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter11
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter11
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For more complex data visualization tasks provided in this chapter, Gephi (https://gephi.org/) 

may also be required. The installation manual is available here: https://gephi.org/users/

install/.

What are dynamic graphs?
In the realm of graph theory, the conventional representation of relationships through static graphs 

has long been the cornerstone of various analytical approaches. As described in Chapter 1, Getting 

Started with Graphs, a static graph is denoted as G (V, E), where V is its set of vertices and E is its 

set of edges. However, the limitations inherent in static graphs have become increasingly evident, 

prompting the necessity to delve into the temporal dimension of dynamic graphs. Static graphs, 

while indeed efficient for capturing instantaneous relationships, fall short in encapsulating the 

evolving nature of connections over time, which is crucial in many real-world phenomena. To address 

this limitation, dynamic graphs extend the concept of static graphs to incorporate the temporal 

dimension. This concept can be used to solve several problems, as we will see in the next section.

Common problems with temporal graphs
The concept of temporal graphs is useful in all the real-world problems that can be  

represented as a graph, where the nodes and edges of the graph may change over time. For example,  

temporal graphs are extensively applied in modeling social networks. By capturing the evolving 

relationships between individuals, temporal graphs enable a more accurate representation of 

social dynamics. This is particularly useful for predicting changes in friendships, community 

structures, and the information diffusion over time.

Also, in transportation systems, such as road or airline networks, the dynamics of connection 

are time-dependent. Temporal graphs may help model the changing patterns of traffic, optimal 

routing, and impact of events such as rush hours or seasonal variations on the network’s structure.

Temporal graphs are also useful for representing and analyzing communication networks, where 

the time of interactions is crucial. By considering the temporal order of messages or calls, analysts 

can gain insights into communication patterns, identify anomalies, and enhance the efficiency 

of network protocols.

Those are only a few examples of how temporal graphs can provide a powerful framework 

for modeling and understanding relationships over time. Another example is biology, where  

temporal graphs are employed to study dynamic processes, such as protein-protein interactions, 

gene regulatory networks, and ecological systems. In finance and stock markets, temporal graphs 

constitute a valuable tool for modeling transactions and movements to help explain market trends, 

detect anomalies, and improve predicting processes. 

https://gephi.org/
https://gephi.org/users/install/
https://gephi.org/users/install/
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In epidemiology, temporal graphs can help to explain the dynamics between individuals, regions, 

and populations, aiding in predicting the course of the epidemic and implementing effective 

healthcare strategies.

As we have seen in Chapter 6, Solving Common Graph-Based Machine Learning Problems, all these  

problems can be reduced (and thus solved) to a specific task, such as node classification (or  

regression), graph classification (or regression), and link prediction. Similar consideration should 

also be made for problems involving a temporal component since tasks on static graphs have a 

natural translation into the temporal domain:

•	 Node and graph classification over time: Let Vt be a set of vertices of a graph Gt. Node 

classification at time t is the problem of classifying a vertex in Vt into one (or more)  

predefined classes, usually based on past or future information. If we aim to classify 

the whole graph at time t, the problem is called graph classification over time. A similar  

definition can be followed for the tasks of node regression and graph regression that we 

saw in Chapter 6, Solving Common Graph-Based Machine Learning Problems.

•	 Link prediction over time: This is the task of predicting when a new connection between 

two nodes will be created at a particular time point t, possibly exploiting past or future 

information on the graph.

It is worth mentioning that an alternative way of seeing these problems is under the setting of time 

prediction. In this scenario, we want to predict when an event happened or when it will happen. In 

other words, we want to predict at which time step t a new connection will be established, when 

a new node will appear in the graph, when a node will change its status, and so on.

But how can we formalize the concept of temporal graphs? Let’s see in the next section.

Representing dynamic graphs
A critical aspect when modeling dynamic graphs is to define the granularity of the temporal 

dimension. In particular, two different methods may be adopted:

•	 Discrete-time approaches: Time is considered to be discrete, thus the evolution of the 

dynamic graph is described as a sequence of static graphs (snapshots) at a fixed timestamp

•	 Continuous time: Here, time is considered to be continuous, and specific events are  

recorded in real time

Based on the above considerations, the transition from static to dynamic involves embracing 

a spectrum of definitions. Beginning with static graphs of the form G (V, E, X), where V is a set 

of nodes, E is a set of edges, and X is a set of features describing nodes, we progress to spatio- 

temporal graphs.
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Spatio-temporal graphs are of the form G (V, E, Xt), indicating that, while the topology remains 

the same, the features may change over time.

By further extending this concept, we encounter discrete-time dynamic graphs:

•	 Discrete-time dynamic graphs are of the form G (Vt, Et, Xt). Here, not only do the  

features change over time, but so does the topology of the graphs (connections appear and  

disappear, as well as nodes in the graph). In this scenario, time is considered to be discrete, 

meaning that we have snapshots of the changing graph over time at discrete time points.

Finally, the concept of discrete-time dynamic graphs can be further generalized to  

continuous-time dynamic graphs, where each event (change in the graph) is observed 

and recorded individually, together with its timestamp.

•	 Continuous-time dynamic graphs are represented as a pair, (G, O), where G(Vt0, Et0, 

Xt0) is the graph’s initial state at time 0 and O is the set of events recorded for the graph 

through time. An event is a triple (event type, event, timestamp) where the event type 

can be any type of topology or feature update, including node addition/deletion, edge 

addition/deletion, feature update, and edge weight update. An example of an event is the 

tuple (node deletion, v4, 19-11-2023), meaning that on 19-11-2023 the node v4 was deleted.

In this section, we introduced temporal graphs and common ways of representing temporal 

graphs at different time granularities. In the next section, we will see how temporal graphs can 

be encoded to extract relevant features for downstream tasks!

Embedding dynamic graphs
As we saw in Chapter 2, Graph Machine Learning, most of the state-of-the-art machine learning 

algorithms on graphs can be modeled into an encoder-decoder framework. The same applies to 

dynamic graphs. More specifically:

•	 The encoder takes as input a dynamic graph and returns as output its embedded  

representation

•	 The decoder takes as input an embedded representation of the dynamic graph and,  

depending on the task, outputs a prediction (it can be a new line, a class, or even a  

reconstructed graph)

In fields where dynamic graphs can be used to describe various phenomena, accurately  

modeling the graph’s evolution is often essential for precise predictions. Over time, various  

categories of machine learning models have been created to capture both the structure and  

evolution of dynamic graphs. 
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Notably, adaptations of graph neural networks (GNNs) tailored for dynamic graphs have  

recently demonstrated success in various domains, emerging as indispensable tools in the  

machine learning toolbox.

In this section, some of the most common methods for embedding dynamic graphs will be  

presented. However, for a thorough survey of representation learning methods for dynamic graphs, 

check out the scientific papers Representation learning for dynamic graphs: A survey by Kazemi 

et al. (2020), A survey on embedding dynamic graphs by Barros et al. (2021), and Dynamic Graph  

Representation Learning With Neural Networks: A Survey by Yang et al. (2024). For a more  

specialized exploration of GNN-based approaches to dynamic graphs, refer to the paper  

Foundations and modelling of dynamic networks using dynamic graph neural networks: A survey by 

Skarding et al. (2021).

Let’s first introduce a mathematical formulation to define the problem of dynamic graph  

embedding. The task involves mapping a dynamic graph G = (Vt, Et, Xt) with evolving nodes 

and edges into a d-dimensional vector space over time. This mapping captures both the  

network’s topological structure and temporal dependencies. The goal is to learn representations 

that can reconstruct the dynamic graph, predict its behavior beyond given timestamps, or address  

specific tasks like node classification. When the graph topology changes, there are two possible  

interpretations: either the vector representations move within the embedding space, allowing the 

tracking of node trajectories, or the embedding space evolves over time, enabling the learning of 

mappings between consecutive timestamps. Notice that the temporal granularity of the dynamic 

graph and the temporal embedding do not need to be the same. In fact, it is entirely reasonable 

for dynamics graphs to capture low-level interactions (e.g., daily events) mapped into a coarser 

granularity (e.g., months or years).

Following the paper A survey on embedding dynamic graphs, we propose a taxonomy of dynamic 

graph embedding methods (Figure 11.1). The taxonomy categorizes dynamic graph methods into 

the following:

•	 Factorization-based methods

•	 Random walk-based methods

•	 Graph kernel methods

•	 Temporal point process methods

•	 Deep learning-based methods

•	 Agnostic models
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These are depicted here:

Figure 11.1: Dynamic graph embedding taxonomy

Let’s discuss each of these methods in the following sections.

Factorization-based methods
Factorization-based techniques produce embeddings over time by decomposing low-rank  

representations of time-dependent similarity measures. As we saw in Chapter 4, Unsupervised 

Graph Learning, graphs can be represented either as a sequence of matrices or as three-way  

tensors linking nodes’ similarity. This matrix (or tensor) can be factorized to emphasize specific 

properties of the input graph.

Dynamic graph embedding with matrix factorization follows static graph principles but  

introduces temporal dependence into the decomposition process. There are three main methods 

for inserting temporal dependence in the matrix factorization process:

•	 Jointly optimizing reconstruction and temporal smoothing: Here, the loss function 

consists of two terms. The first term measures the quality of the reconstruction (as in 

the static graph scenario) and the second term measures the similarity between the  

embeddings for each pair of consecutive time stamps, thus ensuring a smooth evolution 

of the embedding envelope.

•	 Incremental updates on embeddings: With this approach, the embeddings are  

computed by iteratively adjusting an initial representation based on the changes observed 

in the similarity matrices over time. For example, such an adjustment can be done using 

first-order matrix perturbation theory in symmetric matrices iteratively.
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•	 Temporal matrix factorization: Here, each snapshot is usually decomposed into two 

components: a constant matrix U representing persistent properties between a pair of 

nodes and a time-dependent matrix Vt representing changes in topology over time. This 

temporally parameterized factorization (obtained, for example, by minimizing the sum 

of the squares between the adjacency matrix at time t and its reconstruction UVt
T) can be 

used to reconstruct the structure of the network at any time t (past or future).

As per tensor-based approaches, it is natural to represent dynamic graphs as a three-way  

tensor (that is, a stack of adjacency matrices). Then, tensor factorization methods such as  

CANDECOMP/PARAFAC (CP) and Tucker decomposition can be used to learn both node  

embeddings and temporal embeddings.

Random walk-based methods
An alternative set of techniques for graph embedding revolves around random walks. As 

shown in Chapter 4, Unsupervised Graph Learning, multiple fixed-length random walks are  

considered as sentences, creating a context for each node and capturing higher-order dependencies  

without relying on adjacency matrices. The resulting node sequence matrix is then factorized, often  

employing a neural network architecture such as skip-gram. There are three main types of  

methods for embedding temporal graphs:

•	 Random walks on snapshots: This involves generating time-dependent node sequences 

by exploring the evolving graph structure at different timestamps.

•	 Evolving random walks: This method adapts to topological changes by incrementally 

updating representations. It ensures that the embeddings capture the evolving nature of 

the network as it changes over time.

•	 Temporal random walks: This defines time-dependent contexts by exploring  

random walks across consecutive timestamps. It captures evolving patterns and temporal  

dependencies in the graph, providing a comprehensive understanding of the network’s 

dynamics.

Graph kernel-based methods
Another set of methods focuses on elementary substructures derived from an entire graph  

structure. These techniques integrate topological attributes, such as graphlet transition count,  

graphlet frequencies over time, and adjacency matrix summation, during network processing. The goal 

is to employ a shallow autoencoder to learn representations capable of reconstructing intricate 

attributes from these substructures. This enables a more nuanced understanding of the evolving 

nature of these topological building blocks in the network.
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Temporal point process methods
Various techniques in dynamic graph embedding treat interactions between nodes as  

stochastic processes, where probabilities are influenced by the network’s topological structure, node  

features, and historical context. In these approaches, events are assumed to impact a specific node, 

leading to potential interactions with other nodes susceptible to the influence of the current node.

Deep learning-based methods
Temporal graph neural networks (TGNNs) have seen significant progress in capturing spatial 

and temporal dependencies in graph-structured data. The first level of classification distinguishes 

between snapshot-based and event-based models:

•	 Snapshot-based models: These involve the use of two components: a suitable method 

to process the whole graph at each time point and a mechanism to learn the temporal 

dependencies. A further distinction is also made:

•	 Model evolution methods: This kind of model, such as EvolveGCN (Pareya et al. 

2020) uses a recurrent neural network (RNN) to adapt the parameters of a graph 

convolutional network over time

•	 Embedding evolution methods: Instead of evolving the parameters of a static 

GNN, these methods use an RNN to evolve directly the embedding at the previous 

time point

•	 Event-based models: These models process event streams, updating node representations 

each time an event involving that node occurs. These models can be seen as an extension 

of the message-passing paradigm and can be further classified as follows:

•	 Temporal embedding methods: These models (often based on self-attention 

mechanisms) process event streams, incorporating time into the model sequential  

information, node features, and graph topology interactions

•	 Temporal neighborhood methods: These models use specialized modules to 

store and aggregate functions of events involving specific nodes at given times, 

updating node representations as time increases

Agnostic methods
All the approaches discussed so far are based on specific algorithms. For example,  

factorization-based approaches are based on factorization techniques, random walk-based  

methods are based on random walk algorithms, and so on.
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There is a set of approaches that do not rely on any specific paradigm, namely agnostic models. 

These models focus on learning connections between representations at consecutive time points 

or within a time window. Two paradigms within this classification are as follows:

•	 Retrofitted models: These models leverage static network embeddings to learn an  

initial representation of the graph, and then they adapt and refine these representations  

(retrofitting) to capture the dynamic evolution of the graph in subsequent snapshots

•	 Transformation methods: These methods calculate representations for each graph 

snapshot independently using any static method and learn a transformation function 

connecting embeddings at different timestamps

You have now learned about several encoding methods for temporal graphs. It is now time to take 

a look at temporal graph machine learning! We will do this in the next section.

Hands-on temporal graphs
In this section, we will introduce representative examples of the machine learning approaches 

described in the previous sections for dealing with temporal graphs. We will offer a general  

understanding of how these approaches work and provide examples of their implementation 

using publicly available frameworks.

Temporal matrix factorization
Concerning the matrix factorization class of approaches, the Temporal Matrix Factorization 

(TMF) model by Yu et al. (2017) is a method used for temporal link prediction, particularly in  

dynamic network scenarios. This technique leverages matrix factorization with temporal  

dynamics to model the evolution of links in a dynamic network over time.

To exemplify this method, we adopted the implementation provided in the publicly available 

OpenTLP library (https://github.com/KuroginQin/OpenTLP). It integrates an encoder-decoder 

architecture, where the encoder learns model parameters through matrix factorization, and the 

decoder generates predictions based on these parameters. The optimization process involves 

minimizing a loss function that includes regularization and reconstruction error terms, capturing 

temporal dependencies in the network structure.

The core of this TMF implementation lies in the TMF class, which orchestrates the encoding- 

decoding process, as shown in the following code:

class TMF(Module):

    def __init__(self, num_nodes, hid_dim, win_size, num_epoch, alpha, 

https://github.com/KuroginQin/OpenTLP
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beta, theta, learn_rate, device):

        # ...

        self.enc = TMF_Enc(num_nodes, hid_dim, win_size, num_epoch, alpha, 
beta, theta, learn_rate, device)

        self.dec = TMF_Dec()

    def TMF_fun(self, adj_list):

        self.enc.model_opt(adj_list)

        param_list, _ = self.enc()

        adj_estimated = self.dec(param_list, self.win_size+1)

        return adj_estimated

Let’s break down the encoding and decoding steps.

The TMF_Enc class embodies the encoder, which is responsible for learning the model’s parameters:

class TMF_Enc(Module):

    def __init__(self, num_nodes, hid_dim, win_size, num_epoch, alpha, 
beta, theta, learn_rate, device):

        # ...

        self.dec_list = []  # List of decaying factor

        # ...

    def forward(self):

        adj_est_list = []

        for t in range(self.win_size):

            V = self.param[0] + self.param[1]*(t+1) + self.
param[2]*(t+1)*(t+1)

            U = self.param[3]

            adj_est = torch.mm(U, V.t())

            adj_est_list.append(adj_est)

        return self.param, adj_est_list

    def get_loss(self, adj_list, adj_est_list, dec_list, alpha, beta):

        def get_loss(self, adj_list, adj_est_list, dec_list, alpha, beta):

     ''''''

        Function to get training loss

        :param adj_list: sequence of historical adjacency matrix (ground-
truth)
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        :param adj_est_list: sequence of estimated adjacency matrix

        :param dec_list: list of decay factors

        :param alpha, beta: hyper-parameters

        :return: loss function

     ''''''

        win_size = len(adj_list) # Window size (#historical snapshots)

        loss = 0.5*alpha*torch.norm(self.param[3],'p=''ro')**2

        loss += 0.5*beta*torch.norm(self.param[0],'p=''ro')**2

        loss += 0.5*beta*torch.norm(self.param[1],'p=''ro')**2

        loss += 0.5*beta*torch.norm(self.param[2],'p=''ro')**2

        for t in range(win_size):

            dec_t = dec_list[t] # Current decaying factor

            adj = adj_list[t]

            adj_est = adj_est_list[t]

            loss += 0.5*dec_t*torch.norm(a–j - adj_est,'p=''ro')**2

        return loss

    def model_opt(self, adj_list):

      ''''''

        Function to implement the model optimization

        :param adj_list: sequence of historical adjacency matrices 
(ground-truth)

        :return:

     ''''''

        for epoch in range(self.num_epoch):

            _, adj_est_list = self.forward()

            loss = self.get_loss(adj_list, adj_est_list, self.dec_list, 
self.alpha, self.beta)

            self.opt.zero_grad()

            loss.backward()

            self.opt.step()

The forward function reconstructs the adjacency matrices based on the learned parameters. The 

factorization is expressed as:𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑈𝑈 𝑈 (𝑊𝑊0 +𝑊𝑊1 × (𝑡𝑡 𝑡 𝑡) +𝑊𝑊2 × (𝑡𝑡 𝑡 𝑡)2)𝑇𝑇
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The get_loss function calculates the training loss, which includes terms for regularization and 

reconstruction errors:𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿 12 𝛼𝛼‖𝑈𝑈‖𝐹𝐹2 + 12 𝛽𝛽(‖𝑊𝑊0‖𝐹𝐹2 + ‖𝑊𝑊1‖𝐹𝐹2 + ‖𝑊𝑊2‖𝐹𝐹2)∑ 12 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡‖𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒‖𝐹𝐹2𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡 

The model_opt function implements model optimization using the Adam optimizer.

Finally, the TMF_Dec class serves as the decoder, which generates predictions based on the learned 

parameters:

class TMF_Dec(Module):

 ''''''

    Class to define the decoder of TMF

 ''''''

    def __init__(self):

        super(TMF_Dec, self).__init__()

    def forward(self, param_list, pre_t):

     ''''''

        Rewrite forward function

        :param param_list: list of learned model parameters

        :param pre_t: time step of prediction result (e.g., win_size+1)

        :return: prediction result

     ''''''

        V = param_list[0] + param_list[1]*pre_t + param_
list[2]*pre_t*pre_t

        U = param_list[3]

        adj_est = torch.mm(U, V.t())

        return adj_est

The following code exemplifies the usage of the TMF method for temporal link prediction. An 

instance of the TMF model is created with specified parameters, and the TMF_fun function is 

applied to obtain predicted adjacency matrices based on a given sequence of historical adjacency 

matrices (adj_list):

TMF_model = TMF(num_nodes, hid_dim, win_size, num_epochs, alpha, beta, 
theta, learn_rate, device)

adj_est = TMF_model.TMF_fun(adj_list)
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Temporal random walk
As we saw in the previous section, random-walk-based approaches represent an important 

class of methods for the temporal domain. Among the various paradigms, we describe here a  

method based on temporal random walk called CTDNE, by Nguyen et al. (2018), for learning time- 

preserving embedding. Let’s introduce the general idea.

Imagine selecting an initial edge ei = (u, v, t) at a certain time step t as the starting point of 

our temporal random walk. As in the static version described in Chapter 4, Unsupervised Graph  

Learning, at each step, we have to choose another edge to continue the walking. However, this 

time, the structure of the graph can change at each time step. Therefore, we need to define the 

set of temporal neighbors of a node v at a particular time t. One way is as follows:𝑁𝑁𝑡𝑡(𝑣𝑣) = {(𝑤𝑤𝑤 𝑤𝑤′)|𝑒𝑒 𝑒 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  ′) ∈ 𝐸𝐸𝑇𝑇 ∧ 𝑡𝑡′ > 𝑡𝑡𝑡
That is, the set of all nodes that are connected to the node v after the time step t. Intuitively, starting 

from the node v at time t, we can walk over time by traversing all the edges that are present in a 

particular moment after t. Note that it is possible for the same neighbor w to appear in Nt multiple 

times since they can be connected multiple times over time (for example, v sends an email to w 

at time t, then w replies to v at time t+1, and so on).

It is worth noting that, according to the way we sample the next edge to traverse over time, 

the resulting random walk can be biased, allowing us to define effective sampling strategies for  

particular tasks. For example, in the context of temporal link prediction, if we aim to predict edges 

at time t, it is better to compute temporal walks from edges closer to time t rather than temporal 

walks sampled in the distant past, since the latter may offer lower predictive value.

The CTDNE method is available in stellargraph. Let’s see an example of how to use it.

Let’s first define the random walk parameters, including walk_length (the maximum length of 

each random walk), context_window_size (the size of the context window employed for training 

the Word2Vec model), and num_cw (the number of context windows we want to obtain):

walk_length = 80

context_window_size = 10

num_cw = 20
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Let’s then define the walks:

from stellargraph.data import TemporalRandomWalk

temporal_rw = TemporalRandomWalk(graph)

temporal_walks = temporal_rw.run(

    num_cw=num_cw,

    cw_size=context_window_size,

    max_walk_length=walk_length,

    walk_bias="exponential",

)

graph is the input graph. Notice the walk_bias parameter, which allows us to set the sampling 

strategy for the temporal walk.

Finally, we can train the Word2Vec model similarly to what we did in the static case but now using 

the obtained temporal walksgenerating the embeddings, which can then be used for downstream 

machine learning tasks (such as link prediction or node classification):

from gensim.models import Word2Vec

embedding_size = 128

temporal_model = Word2Vec(temporal_walks, size=embedding_size, 
window=context_window_size, min_count=0, sg=1, workers=2, iter=1)

TGNNs
As GNNs have gained popularity, numerous architectures have emerged in recent years to address 

the temporal domain. From classical GNNs combined with recurrent modules (such as LSTM and 

GRU) to more specialized models, such as DynGEM, EvolveGCN, or generative models, these 

architectures have shown promising results in handling temporal dependencies.

In this section, we will introduce the temporal graph network (TGN) framework by Rossi et al. 

(2020), a generic and efficient approach for deep learning on dynamic graphs.

TGN is designed to handle continuous-time dynamic graphs represented as a sequence of  

time-stamped events. It produces as output a node-embedded representation. The core of the 

framework is composed of five different modules:
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•	 Memory: The memory module of the TGN framework manages the model’s state at a 

given time t. It consists of a state vector si(t) for each node i seen so far (that is, every time 

a new node is involved in an event a new vector is added to the memory).

•	 Message function: The message function module calculates the messages that are used 

to update the memory of a node i for each event it participates in. They are typically  

implemented using simple neural networks (for example, MLPs), taking as input the event 

details and the memory states of the nodes involved in the event.

•	 Message aggregator: Since multiple messages from the same node can occur in the 

same batch, an aggregator function can be used to aggregate messages (for example, by  

averaging all the messages for a given node).

•	 Memory updater: This is a learnable function that is typically implemented using  

recurrent units such as LSTM or GRU. It takes as input the current state si(t) of a node i 

involved in a certain event and the output computed by the message function based on 

the event and updates the memory of the node i.

•	 Embedding: This is a learnable function that computes the temporal embedding of a node 

i using the graph and the memory. The embeddings are then used for downstream tasks 

such as link prediction.

TGN and its modules are implemented in pytorch_geometric and can be easily used to solve 

simple and complicated tasks. Let’s see how TGN can be used to embed temporal graphs. Below, 

we will be showing a general framework for computing embeddings using TGN. Notice that, 

to perform any downstream task such as link prediction and node classification, you should 

concatenate a proper decoder (a neural network that takes the embeddings and computes the 

predictions). You can find a complete example in the notebooks attached to this book.

The first step is to initialize the TGNMemory class, which will keep the model’s state and handle 

the message computation and memory update. As shown in the following snippet of code, the 

TGNMemory class can be customized by using proper message modules (in our example we chose 

the IdentityMessage module) and a message aggregator (in our case the LastAggregator module, 

which keeps the most recent event for a node):

from torch_geometric.nn import TGNMemory

from torch_geometric.nn.models.tgn import (

    IdentityMessage,

    LastAggregator,

    LastNeighborLoader)

memory_dim = time_dim = embedding_dim = 100
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memory = TGNMemory(

    data.num_nodes,

    data.msg.size(-1),

    memory_dim,

    time_dim,

    message_module=IdentityMessage(data.msg.size(-1), memory_dim, time_dim),

    aggregator_module=LastAggregator(),

).to(device)

# a data loader that performs neighbor sampling

neighbor_loader = LastNeighborLoader(data.num_nodes, size=10, device=device)

Together with the TGNMemory, we will also create a GNN for obtaining the embeddings. In this 

example, we will define a GraphAttentionEmbedding class, which uses the TransformerConv 

module (a message-passing module implemented in PyTorch):

from torch_geometric.nn import TransformerConv

class GraphAttentionEmbedding(torch.nn.Module):

    def __init__(self, in_channels, out_channels, msg_dim, time_enc):

        super().__init__()

        self.time_enc = time_enc

        edge_dim = msg_dim + time_enc.out_channels

        self.conv = TransformerConv(in_channels, out_channels // 2, 
heads=2, dropout=0.1, edge_dim=edge_dim)

    def forward(self, x, last_update, edge_index, t, msg):

        rel_t = last_update[edge_index[0]] - t

        rel_t_enc = self.time_enc(rel_t.to(x.dtype))

        edge_attr = torch.cat([rel_t_enc, msg], dim=-1)

        return self.conv(x, edge_index, edge_attr)

gnn = GraphAttentionEmbedding(

    in_channels=memory_dim,

    out_channels=embedding_dim,

    msg_dim=data.msg.size(-1),

    time_enc=memory.time_enc,

).to(device)
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Finally, we can insert the TGN components into a training loop, as shown in the following code:

def train():

    memory.train()

    gnn.train()

    memory.reset_state()  # Start with a fresh memory.

    neighbor_loader.reset_state()  # Start with an empty graph.

    total_loss = 0

    for batch in train_loader:

        optimizer.zero_grad()

        batch = batch.to(device)

        n_id, edge_index, e_id = neighbor_loader(batch.n_id)

        assoc[n_id] = torch.arange(n_id.size(0), device=device)

        # Get updated memory of all nodes involved in the computation.

        z, last_update = memory(n_id)

        z = gnn(z, last_update, edge_index, data.t[e_id].to(device),

                data.msg[e_id].to(device))

        # here we can compute the downstream task (for example link 

        # prediction or node classification). This can be achieved by 

        # concatenating a decoder (a neural network which takes the 

        # embeddings and computes the predictions)

        # finally we can compute the loss and perform the update steps.

        # You can customize the criterion according to the downstream 

        # task you want to perform

        loss = criterion(…)

        # Update memory and neighbor loader with ground-truth state.

        memory.update_state(batch.src, batch.dst, batch.t, batch.msg)

        neighbor_loader.insert(batch.src, batch.dst)

        loss.backward()

        optimizer.step()
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        memory.detach()

        total_loss += float(loss) * batch.num_events

With this, we conclude the section where we have learned about the TGN framework, an advanced 

method for modeling dynamic graphs using memory-based representations. We also know how 

TGN’s modular architecture enables effective temporal node embeddings for downstream tasks 

such as link prediction and node classification.

Summary
In this chapter, we introduced the concept of temporal graph machine learning. We discovered 

why it is needed and what the main problems that can be addressed using this paradigm are. We 

also learned a taxonomy for classifying temporal graph machine learning algorithms. Finally, we 

explored practical examples to understand how the theory can be applied to practical problems.

In the next chapter, we will explore the integration of language models with graphs, a rapidly 

evolving area at the intersection of natural language processing and graph-based learning. We 

will discuss recent advancements in leveraging graph structures to enhance language models, as 

well as techniques that incorporate textual data into graph-based representations.

Further reading
•	 Kazemi et al. Representation learning for dynamic graphs: A survey. The Journal of Machine 

Learning Research 21.1 (2020): 2648-2720.

•	 Barros et al. A survey on embedding dynamic graphs. ACM Computing Surveys (CSUR) 55.1 

(2021): 1-37.

•	 Yang et al. (2024). Dynamic graph representation learning with neural networks: A survey. 

IEEE Access, 12, 43460-43484.

•	 Skarding et al. Foundations and modeling of dynamic networks using dynamic graph neural 

networks: A survey. IEEE Access 9 (2021): 79143-79168.

•	 Labonne, Maxime. Hands-On Graph Neural Networks Using Python. Packt Publishing Ltd. 

(2023)

•	 Nguyen et al. Continuous-time dynamic network embeddings. Companion proceedings of  

the web conference (2018)
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GraphML and LLMs

In the rapidly evolving field of artificial intelligence, the convergence of Graph Machine Learning 

(GraphML) and Large Language Models (LLMs) represents a frontier rich with possibilities. This 

chapter explores how these two powerful technologies can be combined to unlock new insights 

and applications. From understanding context-rich relationships in text to enabling enhanced 

reasoning capabilities, this chapter aims to provide a comprehensive overview of state-of-the-art 

advancements in integrating GraphML and LLMs, before delving into theoretical insights and 

practical examples to illustrate their synergy.

In this chapter, we will:

•	 Provide an overview of the synergies between GraphML and LLMs.

•	 Illustrate the benefits of combining LLMs with graph-based approaches.

•	 Offer hands-on practical examples and code snippets to demonstrate these integrations.

•	 Highlight the challenges and opportunities in this emerging field.

Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter12. Please refer to the Practical exercises section of 

Chapter 1, Getting Started with Graphs, for guidance on how to set up the environment to run the 

examples in this chapter, either using Poetry, pip, or Docker.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter12
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter12
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LLMs are powerful but require significant computational resources, especially as their size  

increases (e.g., 3B, 7B, 12B, and 40B parameters). Not everyone has access to the necessary  

hardware to run these models locally. As a result, pay-per-use APIs (such as ChatGPT, Claude, and 

Gemini) are available to query remote LLMs. However, this chapter aims to provide model-agnostic 

examples and suggestions for running powerful LLMs locally on commonly available machines.

In our examples, we’ll use the OpenAI library to interact with a server running the LLM. It can be 

used either with an API key (e.g., OpenAI) or with a local server. For those interested in running 

an LLM locally, we will deploy it using LM Studio (learn more at https://lmstudio.ai/docs/

api/server). To run the LLM on your own machine, simply download the LM Studio software 

and follow the instructions on the website to download and set up the appropriate model.

When fine-tuning or training is required, we will be using the transformer Python module 

(https://pypi.org/project/transformers/), which provides APIs to quickly download, use, 

and fine-tune pretrained models, including LLMs.

Finally, we will be using Docker for running the Neo4j server.

LLMs: an overview
In the rapidly evolving field of artificial intelligence, LLMs have significantly advanced natural 

language processing (NLP) and understanding. These models, characterized by their extensive 

number of parameters and trained on large datasets, have demonstrated remarkable capabilities 

across a wide set of language-related tasks.

The journey of language models began with statistical approaches that relied on probabilistic 

methods to predict word sequences. These early models, while creating the foundations, were 

limited by their reliance on fixed-size context windows and the inability to capture long-range 

dependencies. However, as we also discussed in Chapter 4, Unsupervised Graph Learning, with 

the advent of neural networks, the field has undergone a significant shift, introducing models 

capable of learning word embeddings. In order to improve the ability to capture long-range 

dependencies, the initial neural network models were based on the Long-Short Term Memory 

(LSTM) and Gate-Recurrent Unit (GRU) architecture, which are forms of Recurrent Neural  

Networks (RNNs). However, a pivotal moment occurred with the introduction of the Transformer 

architecture by Vaswani et al. in 2017. Unlike its predecessors, the Transformer model utilized 

self-attention mechanisms, enabling it to consider the entire context of a sentence without the 

sequential constraints inherent in RNNs. This innovation facilitated the development of models 

capable of processing and generating text in a more coherent and fluent way.

https://lmstudio.ai/docs/api/server
https://lmstudio.ai/docs/api/server
https://pypi.org/project/transformers/
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Building upon the Transformer architecture, researchers scaled models to unprecedented sizes, 

leading to the emergence of LLMs such as OpenAI’s GPT series, Google’s BERT and T5, and more 

recently, models such as GPT-3 and GPT-4.

In a nutshell, training LLMs involves optimizing a large number of parameters on very large  

datasets. This process, known as pretraining, typically employs unsupervised learning  

objectives, such as predicting missing words in a sentence (masked language modeling) or forecasting  

subsequent words (causal language modeling). As a side effect, the pre-training phase lets the 

model learn and “understand” a language, resulting in a remarkable ability to generalize across 

various tasks, often achieving state-of-the-art performance. LLMs have demonstrated proficiency 

in a diverse array of applications, reflecting their versatility and depth of language understanding. 

Key areas include text generation, language translation, question answering, and summarization, 

among many others.

Given the strengths of LLMs in unstructured text processing and generative tasks, an  

exciting frontier emerges when we consider their integration with graphs. While LLMs excel in  

understanding and generating natural language, graphs are particularly powerful for  

representing and analyzing structured relationships between entities. In the rest of the book, we 

will see examples of how we can take advantage of both.

Why combine GraphML with LLMs?
As we have learned throughout this book, GraphML excels at representing and analyzing structured 

data such as knowledge graphs, social networks, chemical structures, and so on. It is extremely 

useful for situations where exploiting relationships between entities is crucial for achieving good  

performances. However, LLMs are particularly good at interpreting unstructured text, offering 

generative skills, reasoning, and profound contextual awareness. When it comes to language-based 

activities such as content creation, question answering, and summarization, they excel.

Despite their impressive capabilities, LLMs are not without limitations. One of the most  

significant challenges is the problem of hallucination, where an LLM generates factually incorrect 

or misleading information that appears plausible. This is particularly problematic in domains 

requiring high factual accuracy, such as healthcare, finance, and legal applications. To mitigate 

hallucinations and enhance the reliability of LLM outputs, Retrieval-Augmented Generation 

(RAG) has emerged as a powerful technique. RAG works by dynamically retrieving relevant  

information from an external knowledge source (such as a knowledge graph) at inference time, 

rather than just relying on pre-trained knowledge. This approach ensures that the model has 

access to up-to-date and accurate data, grounding answers in verified information rather than 

generating content purely from its internal representations.
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Recent advancements highlight how integrating GraphML with LLMs can drive significant  

innovation, enabling the development of applications that require both rich semantic  

understanding and relational analysis. For instance:

•	 Graph-Augmented Question Answering: LLMs can leverage knowledge graphs to answer 

domain-specific questions with factual accuracy.

•	 Node Embedding Generation: State-of-the-art frameworks such as GraphGPT use LLMs 

to generate node embeddings directly from textual data, enabling seamless integration 

with graph structures.

•	 Knowledge Graph Construction and Enhancement: Recent applications have shown how 

LLMs can be used to enrich knowledge graphs, where LLMs are used to extract semantic 

relationships and entities from text to enhance existing graph data.

Therefore, by bridging the gap between structured knowledge and natural language  

understanding, the synergy between GraphML and LLMs paves the way for more accurate,  

explainable, and intelligent systems.

In the next section, we will explore the state-of-the-art trends in combining GraphML and LLMs, 

as well as the current challenges.

State-of-the-art trends and challenges
Before diving into specific examples, it is crucial to understand the current landscape of 

GraphML and LLM integration. According to a recent survey by Jin et al. (https://arxiv.org/

abs/2312.02783, 2024), the application scenario can be categorized into three main scenarios:

•	 Pure Graphs: These are graphs that lack associated textual information. Examples include 

social networks, traffic networks, and protein interaction networks. In such cases, the  

focus is on leveraging LLMs to process and analyze the structural aspects of the graph data.

•	 Text-Attributed Graphs: In these graphs, nodes or edges are enriched with textual  

attributes. For instance, in academic networks, papers (nodes) come with titles and  

abstracts, while authors (nodes) have profiles. E-commerce networks also fall into this 

category, where products (nodes) have descriptions, and user interactions (edges) may 

include reviews. The challenge here is to effectively combine the textual content with the 

graph’s structural information.

https://arxiv.org/abs/2312.02783
https://arxiv.org/abs/2312.02783
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•	 Text-Paired Graphs: This scenario involves graphs that are paired with separate  

textual descriptions or documents. Unlike text-attributed graphs, where text is embedded 

within the graph as attributes, text-paired graphs treat the graph and text as distinct but  

related entities. A pertinent example is molecular graphs accompanied by detailed textual  

descriptions of their properties. The objective is to align and integrate the information from 

both the graph structure and the associated text to enhance understanding and analysis.

To effectively utilize LLMs in these scenarios, three primary techniques can be used: LLMs as 

predictors, LLMs as encoders, and LLMs as aligners. Let’s see these approaches one by one.

LLMs as predictors
The simplest and most direct approach is to use LLMs as predictors. In this paradigm, the LLM 

operates as a tool to infer outcomes directly from graph data. Imagine a scenario where textual 

information is either minimal or entirely absent (pure graphs). In this case, you can transform 

the graph data into a format that the LLM can process, such as converting graph structures into 

sequences or textual descriptions.

For instance, consider a simple social network graph where nodes represent people and edges 

indicate friendships (Figure 12.1). These features can be converted into a textual narrative, such 

as Alice is linked with Bob. An LLM can then process this narrative to predict new relationships or 

infer additional attributes about the nodes, such as professional interests or potential connections.

Figure 12.1: Examples of how graphs can be converted to text narratives

Once the data is prepared, the LLM can be fine-tuned or prompted to perform specific tasks. These 

might include predicting node classifications, such as identifying the role of individuals in a  

social network, or link predictions, such as forecasting interactions between entities. In molecular 

research, LLMs as predictors can help determine the properties of chemical compounds based 

solely on their structural representations.
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One advantage of this approach is its simplicity: LLMs can be applied directly to graph data  

without requiring extensive preprocessing or specialized models. However, this simplicity can also 

be a limitation. Purely structural information might not always be sufficient for complex tasks, 

particularly when additional contextual or textual data is available but not leveraged. Moreover, 

scalability and cost must be considered: encoding entire graphs as text can lead to an explosion 

of sentences, making inference expensive, potentially inefficient, and sometimes impossible (for 

example, if the maximum number of words an LLM can process at once is too small to contain 

the whole graph). Performance may also be limited, as this approach is similar to providing an 

LLM with a structured dataset and expecting accurate predictions without tailored adaptations. 

For this reason, more complex graph2text formalisms can be designed, incorporating node/edge 

descriptions into textual narratives while balancing efficiency and accuracy.

LLMs as encoders
When graphs are enriched with textual attributes, the LLM as encoder approach becomes particularly 

powerful. Here, the LLM is tasked with processing and encoding the textual information associated 

with nodes or edges, producing meaningful representations that can be integrated with the graph’s  

structural features. These embeddings are then integrated into the graph through proper algorithms 

such as graph neural networks, which process the combined representation to perform downstream 

tasks.

This hybrid representation combines the strengths of both modalities, capturing the nuances 

of text alongside the relationships encoded in the graph. As depicted in Figure 12.2, each node 

could have attributes, such as a name and a brief bio for a node representing a person, while the 

edges might be annotated with information about the nature of the relation, e.g., close friend or 

colleague for a graph representing social networks. These features can be converted into a textual 

narrative, such as Alice, a software engineer, is close friends with Bob, a data scientist.

Figure 12.2: Examples of how LMMs can be used as encoders for node attributes
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Other examples include academic citation networks, where papers (nodes) come with titles,  

abstracts, and keywords. An LLM can process these textual attributes to generate embeddings that 

encapsulate their semantic content. These embeddings are then combined with graph-specific 

features, such as the citation relationships between papers, to create a unified representation. 

Similarly, in e-commerce platforms, product descriptions and user reviews can be encoded by 

LLMs to enhance product similarity graphs or user behavior analysis.

It is worth noticing that the process of using LLMs as encoders typically involves fine-tuning 

the LLM on domain-specific textual data to ensure that the embeddings accurately reflect the 

requirements of the task.

This encoder approach offers significant benefits. By leveraging textual data, it captures context 

and nuances that purely structural methods might miss. It is particularly effective in scenarios 

where textual attributes can provide critical insights, such as identifying the themes of academic 

papers or understanding user preferences in recommendation systems.

LLMs as aligners
The goal here is to align and integrate the information from both structure and textual  

descriptions (or accompanying documents, in the case of text-paired graphs), enabling a  

comprehensive analysis that leverages the strengths of each. This can be achieved, for example, 

by finding a shared latent space or a semantic mapping that connects the two modalities. Such 

an approach might involve designing models that jointly optimize both modalities or using  

attention mechanisms to focus on the most relevant parts of each input.

In more detail, the synergy between textual encoding (handled by the LLM) and graph structure 

encoding (handled by, for example, a GNN), can be typically in two ways:

1.	 Prediction Alignment: Iterative training where LLMs and GNNs generate pseudo-labels 

to guide each other’s learning
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2.	 Latent Space Alignment: Contrastive learning to align the latent representation of the 

text and the graph structure in a shared space (e.g., Figure 12.3)

Figure 12.3: Graphs and associated texts can be embedded in a shared latent space

For example, in molecular research, a molecular graph might represent the structure of a compound, 

while a textual description provides information about its properties, synthesis, or applications. In this 

context, an LLM can be used to process the text to extract relevant features and align these with the 

structural characteristics of the graph, enabling tasks such as property prediction or drug discovery.

As you can imagine, this approach is particularly powerful in interdisciplinary fields where graphs and 

text provide complementary points of view. In computational social science, for instance, social graphs 

representing interactions between individuals can be aligned with news articles, social media posts, 

or other textual data to study the spread of information or public sentiment. Similarly, in e-commerce, 

user behavior graphs can be integrated with textual reviews to improve personalized recommendations.

Now that we have a clearer understanding of the LLM and graph landscape, let’s dive into a  

practical example of how this integration works. We will explore this in the next section.

Hands-on GraphML with LLMs
Based on the previous characterization, the following sections present hands-on examples that 

showcase how GraphML and LLMs can be integrated.
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LLM as predictor
First of all, let’s define a simple social network using NetworkX. We have three nodes (Alice, Bob, 

and Carl), each coming with a short description of their job and what they like:

import networkx as nx

# Create a directed graph

G = nx.DiGraph()

G.add_node(1, name="Alice", description="she is a software engineer and 
she likes reading.")

G.add_node(2, name="Bob", description="he is a data scientist and he likes 
writing books.")

G.add_node(3, name="Carl", description="he is a data scientist and he 
likes swimming.")

G.add_edge(1, 3, relationship="is friend with")

Now that we have created the graph, let’s define a function to encode it as a narrative text. We 

will be using a simple formalism in which we first declare each node and then we describe each 

connection. Notice that more complicated formalisms can be used to describe more complex 

scenarios, despite there being no standard way to do this:

# Function to convert network to text

def graph_to_text(graph, edge_type):

    descriptions = []

    # 1. describe the graph structure

    descriptions.append(f"Num nodes: {graph.number_of_nodes()}.\n")

    for n in graph:

        descriptions.append(f"Node {n}: {graph.nodes[n]['name']}\n")

    for u, v, data in graph.edges(data=True):

        node_u = graph.nodes[u]

        node_v = graph.nodes[v]

        descriptions.append(f"The person named '{node_u['name']}' 
({node_u['description']}) {edge_type} '{node_v['name']}' 
({node_v['description']}).")

    return " ".join(descriptions)

text_input = graph_to_text(G)

print("Social Network as text:\n", text_input)
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The output should be as follows:

Social Network as text:                                                                                                                      
Num nodes: 3.                                                                                                                               
Node 1: Alice                                                                                                                               
Node 2: Bob                                                                                                                                 
Node 3: Carl                                                                                                                                
The person named 'Alice' (she is a software engineer and she likes 
reading.) is friend with 'Carl' (he is a data scientist and he likes 
swimming.).

We will now declare a prompt, which is a simple instruction describing the task to the LLM:

# Create a prompt

prompt = f"Here is a social network: {text_input}\nBased on the above, 
suggest any missing link and explain why they might be relevant."

It is now time to send the prompt to the LLM server and wait for a response. To achieve this aim, 

we will be using the OpenAI API to create a client instance. The client will connect to the LLM 

server, and send and receive messages:

# Call the llm to generate a response

from openai import OpenAI

# Create a client for interacting with the LLM server. Here, we are 

# running LM Studio locally, therefore we use the localhost address and 

# "lm-studio" as api key. You can replace this line with a proper api key

# to a remote LLM service if you have one.

client = OpenAI(base_url="http://localhost:1234/v1/", api_key="lm-studio")

Let’s use the client functionalities to create and send a message. Note that we are also specifying 

which language model to use (minicpm-llama3-v-2_5). If you are running LM Studio locally, you 

need to download the model first:

response = client.chat.completions.create(

    model="minicpm-llama3-v-2_5",

    messages=[{"role": "system", "content": "You are a helpful assistant."},

              {"role": "user", "content": prompt}],

    max_tokens=300,

)
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Finally, let’s check the answer:

# Extract the generated text from the response

print(response.choices[0].message.content)

The output should be as follows:

A possible missing link in this citation network could be between Alice 
and Bob. Since Alice is a software engineer who likes reading and Bob is 
mentioned as a friend of Carl (a data scientist), it would make sense 
for them to have some connection. Since Alice enjoys reading, she may 
appreciate discussions or debates about literature with someone who shares 
her interest.

The explanation is pretty clear: since Alice works in the tech industry and is a friend of Carl, it 

makes sense for Carl to introduce her to Bob, who shares similar interests.

Note that to add this link to the graph using NetworkX, you need to do some text processing. We 

leave this as an exercise for you. Furthermore, you may want to tune the prompt to let the model 

answer using a specific way to facilitate the parsing (e.g., it can answer something like “Alice -> 

Bob”).

In the next example, we will see how to use the LLM as an encoder.

LLM as encoder
When graphs are enriched with textual attributes, the LLM as encoder approach becomes powerful. 

For example, in a recommendation system, products (nodes) might have textual descriptions, reviews, 

and other metadata. This textual data can be processed with LLMs to create meaningful embeddings, 

which can be further combined with graph-structured features such as user-product interactions.

Let’s walk through an example of enhancing a movie recommendation graph using LLMs as 

encoders. Let’s define our graph where nodes represent movies, and edges represent similarities 

between movies. Each node also contains a textual description of the movie:

import networkx as nx

from openai import OpenAI

# Let's create a toy movie graph

G = nx.Graph()

G.add_node(1, title="Inception", description="A mind-bending thriller 
about dreams within dreams.")
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G.add_node(2, title="The Matrix", description="A hacker discovers the 
shocking truth about reality.")

G.add_node(3, title="Interstellar", description="A team travels through a 
wormhole to save humanity.")

G.add_edge(1, 2, similarity=0.8)

G.add_edge(1, 3, similarity=0.9)

As in the previous example, let’s initialize the client to query the LLM server:

# Intialize the client

client = OpenAI(base_url="http://localhost:1234/v1/", api_key="lm-studio")

Let’s write a function to compute the text embedding using the LLM. It takes as input a text and 

returns the embedding. For convenience, our function will exploit the client.embeddings.create 

method from the OpenAI API. Also, in this case, we have to specify an LLM. We have chosen the 

powerful Nomic embedding model (recall you have to download it in advance through LM Studio):

def encode_text(text):

    # Prepare the query for the LLM

    response = client.embeddings.create(

        input=text,

        model="text-embedding-nomic-embed-text-v1.5-embedding"

    )

    # Get 768-dimensional embedding

    embedding = response.data[0].embedding

    return embedding

For each node in the graph, let’s compute the corresponding embedding and set it as a node 

attribute in the NetworkX graph:

# Encode movie descriptions and add embeddings to the graph

for node in G.nodes(data=True):

    description = node[1]['description']

    embedding = encode_text(description)

    node[1]['embedding'] = embedding
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Once we have textual embeddings, we can integrate them with structural features such as node 

degrees or edge similarities. This hybrid representation is then fed into a downstream GraphML 

model (e.g., graph neural network):

import numpy as np

# Combine embeddings with structural features

for node in G.nodes(data=True):

    # We are using degree as a sample feature

    structural_features = np.array([G.degree[node[0]]])

    node[1]['combined_features'] = np.concatenate((node[1]['embedding'],

                                                   structural_features),

                                                   axis=None)

With the combined features, you can train a machine learning model to predict recommendations 

or similarities between nodes. For instance, we can build a simple transductive nearest-neighbor 

approach by computing the pairwise similarities between node features. This way, we can suggest 

“similar” movies to users:

from sklearn.metrics.pairwise import cosine_similarity

# Compute similarity between nodes based on combined features

node_features = [node[1]['combined_features'] for node in 
G.nodes(data=True)]

similarity_matrix = cosine_similarity(node_features)

# Example: Find movies similar to 'Inception' (node 1)

movie_index = 0  # Index of the movie 'Inception'

# Let's take the top 2 similar

similar_movies = np.argsort(-similarity_matrix[movie_index])[1:3]

print("Movies similar to Inception:", similar_movies)

Of course, once you have extracted the node features, you can also use the various models 

we have described in previous chapters, such as GNNs seen in Chapter 4, Unsupervised Graph 

Learning, for unsupervised learning, and in Chapter 5, Supervised Graph Learning, for supervised  

learning.  However, it is important to observe that, when combining textual embeddings with 

structural features, it’s crucial to balance their influence. High-dimensional text embeddings can  

overshadaw low-dimensional structural features, potentially distorting similarity computations. 

Proper scaling ensures both types of features contribute meaningfully as well as weighting the  

contribution of each feature. For example, you may want to assign different weights to text versus 

structure when concatenating, and using structural encoders such as GNNs may help balance 

dimensionalities.
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LLM as aligner
As we have previously learned in this section, there are two typical approaches for achieving  

text-graph alignment: prediction alignment and latent space alignment. In the rest of this section, 

we will explore each in more detail with practical examples.

Prediction alignment
First, let’s showcase how LLM-GNN prediction alignment can be achieved. Here’s how we present 

an approach based on iterative training. The LLM learns from the text information in the graph 

(e.g., node descriptions), while the GNN learns from the graph structure. Each model generates 

pseudo-labels, which the other model uses to improve its training. Summarizing:

1.	 The LLM analyzes text data and generates node labels, which will serve as pseudo-labels 

for the GNN.

2.	 The GNN then processes the graph structure and produces node labels based on  

connectivity and relationships, which are then fed back to the LLM.

3.	 The process is repeated with each model refining its prediction based on insights from 

the other.

As we have previously said, LLMs are resource-intensive. As this example requires a bit of fine- 

tuning, it is difficult to showcase an example using very large models such as GPT. Therefore, we 

will be using a smaller but powerful model, BERT (https://arxiv.org/pdf/1810.04805). To 

access the model, we will use the transformer Python module.

Let’s consider a toy citation network, where nodes represent research papers, edges represent 

citations between papers, and each node is described by title and abstract:

from torch_geometric.data import Data

# Assume a toy dataset with 3 papers (nodes), edges, and labels

data = Data(

    x=torch.rand(3, 10),  # let's use random features for simplicity

    edge_index=torch.tensor([[0, 1], [1, 2]], dtype=torch.long),  # Edges

    y=torch.tensor([0, 1, 2], dtype=torch.long),  # True labels

    text=["Paper A abstract", "Paper B abstract", "Paper C abstract"],

    # Text data

)

https://arxiv.org/pdf/1810.04805
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Let’s define a GNN module to encode structural information and a TextEncoder module, which 

uses the transformer API, to download and create the BERT model. Note that, since transformer 

is built in PyTorch, we will define our GNN using PyG:

# 1. Define the Graph Neural Network (GNN)

class GNN(torch.nn.Module):

    def __init__(self, input_dim, hidden_dim, output_dim):

        super(GNN, self).__init__()

        self.conv1 = GCNConv(input_dim, hidden_dim)

        self.conv2 = GCNConv(hidden_dim, output_dim)

    def forward(self, x, edge_index):

        x = self.conv1(x, edge_index).relu()

        x = self.conv2(x, edge_index)

        return x

# 2. Define the LLM (e.g., BERT for text encoding)

class TextEncoder(torch.nn.Module):

    def __init__(self, model_name="bert-base-uncased", output_dim=128):

        super(TextEncoder, self).__init__()

        self.tokenizer = AutoTokenizer.from_pretrained(model_name)

        self.model = AutoModel.from_pretrained(model_name)

        self.fc = torch.nn.Linear(self.model.config.hidden_size, output_dim)

    def forward(self, texts):

        # Tokenize and encode text data

        inputs = self.tokenizer(texts, return_tensors="pt", padding=True, 
truncation=True)

        outputs = self.model(**inputs)

        cls_embedding = outputs.last_hidden_state[:, 0, :]  

        # [CLS] token embedding

        return self.fc(cls_embedding)
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In the notebook attached to the repository, we have built a pretty standard GNN using two graph 

convolution layers. The TextEncoder, instead, is composed of the pretrained LLM model, followed 

by a trainable linear fully connected (fc) projection layer. The forward pass first converts the text 

into a format that is digestible by the LLM (tokenization). The resulting embeddings are then 

forwarded to the linear layer to make a prediction. Please refer to the notebook attached in the 

repository for the implementation details of the GNN and the text encoder.

Finally, using these analytical components (GNN and text encoder), we can define our training 

loop as follows:

# 3. Training Loop with Pseudo-label Exchange

def train_prediction_alignment(data, gnn, text_encoder, num_iterations=5):

    optimizer_gnn = torch.optim.Adam(gnn.parameters(), lr=0.01)

    optimizer_text = torch.optim.Adam(text_encoder.parameters(), lr=0.0001)

   

    # Initialize with true labels for first iteration

    gnn_pseudo_labels = data.y.clone()

    llm_pseudo_labels = data.y.clone()

   

    for iteration in range(num_iterations):

        # Train GNN using LLM pseudo-labels from previous iteration

        gnn.train()

        optimizer_gnn.zero_grad()

        gnn_logits = gnn(data.x, data.edge_index)

        gnn_loss = torch.nn.CrossEntropyLoss()(gnn_logits, llm_pseudo_labels)

        gnn_loss.backward()

        optimizer_gnn.step()

       

        # Generate new GNN pseudo-labels

        with torch.no_grad():

            gnn_pseudo_labels = torch.argmax(gnn_logits, dim=1)

       

        # Train Text Encoder using GNN pseudo-labels

        text_encoder.train()

        optimizer_text.zero_grad()

        text_logits = text_encoder(data.text)

        llm_loss = torch.nn.CrossEntropyLoss()(text_logits, gnn_pseudo_
labels)
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        llm_loss.backward()

        optimizer_text.step()

       

        # Generate new LLM pseudo-labels for next iteration

        with torch.no_grad():

            llm_pseudo_labels = torch.argmax(text_logits, dim=1)

       

        print(f"Iteration {iteration+1}: GNN Loss = {gnn_loss.item():.4f}, 
LLM Loss = {llm_loss.item():.4f}")

        print(f"  GNN predictions: {gnn_pseudo_labels.tolist()}")

        print(f"  LLM predictions: {llm_pseudo_labels.tolist()}")

In this supervised loop, the GNN model predicts pseudo-labels (the model is optimized using  

CrossEntropyLoss to minimize the difference between the prediction and the targets). The  

predicted labels are then used as targets to fine-tune the text encoder. This way, the final  

model benefits from both textual and structural insights, enabling more accurate classification of  

research papers.

Of course, this is a toy example with random features, but we hope you grasp the principle to 

apply it in real-world cases and better understand related state-of-the-art approaches (check the 

end of this chapter for further reading!).

Latent space alignment
Instead of iteratively sharing labels, this method aligns the latent representations of text and 

graph data via contrastive learning. The goal is to force text and graph encodings for the same 

entity (e.g., a node) to be similar in a shared space while pushing encodings for unrelated entities 

far apart. Summarizing:

1.	 Text Encoding: Use an LLM to encode the node descriptions into a latent vector.

2.	 Graph Encoding: Use a GraphML model (e.g., GNN) to encode the graph structure around 

each node into latent vectors.

Note

The “symmetric” approach can also be used in a unidirectional (asymmetric) manner, 

where pseudo-labels from only one model are used to train the other.
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3.	 Contrastive learning: Use contrastive learning to maximize the similarity between the 

text and graph encoding for the same node or neighbor nodes, while minimizing the 

similarity between unrelated nodes.

Let’s consider a toy knowledge graph, where nodes represent products, edges represent  

relationships such as “frequently bought together,” and each node has a text description:

# Toy data with 3 products and their relationships

data = Data(

    x=torch.rand(3, 10),  # Node features

    edge_index=torch.tensor([[0, 1], [1, 2]], dtype=torch.long),  # Edges

    text=["Product A description", "Product B description", "Product C 
description"],  # Text data

)

For simplicity, let’s use the same GNN and text encoder as in the previous example. Therefore, we 

only need to define our contrastive loss and training loop.

As previously described, the contrastive loss will force the model to minimize differences between 

“similar” nodes, while maximizing the difference between unrelated nodes. In more detail, we 

compute a similarity matrix sim of shape (batch_size, batch_size), where sim[i, j] is the 

similarity between the i-th graph embedding and the j-th text embedding. Here, we assume a 

perfect one-to-one correspondence (labels), where the i-th graph embedding should match the 

i-th text embedding:

# Contrastive Learning Objective

def contrastive_loss(graph_emb, text_emb, tau=0.1):

    sim = F.cosine_similarity(graph_emb, text_emb)

    labels = torch.arange(sim.size(0)).to(sim.device)

    loss = F.cross_entropy(sim / tau, labels)

    return loss

The training loop simply optimizes the graph and text encoders using the contrastive loss:

# Training Loop for Latent Space Alignment

def train_latent_alignment(data, gnn, text_encoder, epochs=10):

    optimizer = torch.optim.Adam(list(gnn.parameters()) + list(text_
encoder.parameters()), lr=0.001)

    for epoch in range(epochs):

        optimizer.zero_grad()
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        # Encode graph and text

        graph_emb = gnn(data.x, data.edge_index)  # Graph embeddings

        text_emb = text_encoder(data.text)  # Text embeddings

        # Compute contrastive loss

        loss = contrastive_loss(graph_emb, text_emb)

        loss.backward()

        optimizer.step()

        print(f"Epoch {epoch+1}: Loss = {loss.item()}")

This fusion may create richer node or entity embeddings, improving downstream tasks such 

as node classification and recommendation and retrieval systems (e.g., you may retrieve nodes 

from the graph based on their description). Interestingly, this unified representation can also 

support zero-shot and few-shot learning in graph-based tasks. Since LLMs process textual prompts, 

they can generalize to new, unseen categories within a graph without requiring extensive  

retraining. For example, if a graph-based dataset lacks labeled examples for a particular node class, 

an LLM can still classify nodes by leveraging semantic similarities and contextual cues from textual  

descriptions.

We have seen how text and graphs can be aligned to achieve a tight integration. In the next section, 

we will see another practical application of combining graphs and LLMs, which is how to build 

a knowledge graph from an unstructured text using an LLM.

Building knowledge graphs from text
In Chapter 8, Text Analytics and Natural Language Processing Using Graphs, we used spaCy to convert 

text into a graph. While spaCy is excellent for named entity recognition (NER) and dependency 

parsing, it has limitations when extracting complex relationships from text. Conventional NER 

performs well in domains with well-established taxonomies and is dependable for organized, 

predefined entity types. To extract entities and relationships from large, unstructured data sources, 

LLMs offer a more adaptable, context-aware alternative.

Here, we use an LLM-powered approach to build a Knowledge Graph (KG) from text. We will 

be using LangChain (https://www.langchain.com/), an open-source framework designed to 

help developers build applications powered by LLMs. It provides tools for prompt engineering, 

memory management, and data retrieval, amongst others. 

https://www.langchain.com/
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In particular, we will make use of LLMGraphTransformer to extract entities and relationships from 

text, which features some nice properties:

•	 It may handle complex relationships better than rule-based NLP methods.

•	 It extracts a wider variety of entities beyond predefined spaCy models.

•	 It adapts dynamically to different domains without retraining a model.

Let’s first consider a free text as follows:

text = """

Marie Curie, born in 1867, was a Polish and naturalized-French physicist 
and chemist who conducted pioneering research on radioactivity.

She was the first woman to win a Nobel Prize, the first person to win 
a Nobel Prize twice, and the only person to win a Nobel Prize in two 
scientific fields.

"""

In the following snippet of code, we will use LangChain objects to convert the text into a set of 

nodes and relationships (KG) using an LLM. LangChain will handle all the operations to convert 

the text into a proper object (Document) and send it to our backend server to be parsed by our 

MiniCPM model in LM Studio:

from langchain_experimental.graph_transformers.llm import 
LLMGraphTransformer

from langchain_openai import ChatOpenAI

from langchain_core.documents import Document

llm = ChatOpenAI(temperature=0, model_name="minicpm-llama3-v-2_5", base_
url="http://localhost:1234/v1", api_key="lm-studio")

llm_transformer = LLMGraphTransformer(llm=llm)

documents = [Document(page_content=text)]

graph_documents = llm_transformer.convert_to_graph_documents(documents)

print(f"Nodes: {graph_documents[0].nodes}")

print(f"Relationships: {graph_documents[0].relationships}")

The output should be as follows:

Nodes:[Node(id='Marie_Curie', type='Person', properties={}), 
Node(id='Pierre_Curie', type='Person', properties={})]                                                                                                
Relationships:[Relationship(source=Node(id='Marie_Curie', 
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type='Person', properties={}), target=Node(id='Pierre_Curie', 
type='Person', properties={}), type='MARRIED_TO', properties={}), 
Relationship(source=Node(id='Marie_Curie', type='Person', properties={}), 
target=Node(id='Nobel_Prize', type='Award', properties={}), type='WON_
NOBEL_PRIZE', properties={}), Relationship(source=Node(id='Pierre_
Curie', type='Person', properties={}), target=Node(id='Marie_Curie', 
type='Person', properties={}), type='MARRIED_TO', properties={})]

That’s it! We can parse the nodes and relationships to encode the graph in a proper framework 

such as NetworkX or Neo4j.

Note that different results can be achieved using longer text (e.g., a custom PDF) and different 

models. For example, it is expected that fine-tuned models or larger models (more than 100B 

parameters) can achieve better results. However, they would need more resources.

In the next section, we will see how can we load the extracted graph into Neo4j to perform 

GraphRAG, that is, how we can augment an LLM using a knowledge graph for more precise 

question answering.

Real-world scenarios: GraphRAG
In the context of integrating LLMs with graph-based data, the term “LLM as aligner” refers to 

the role of LLMs in aligning or integrating textual information with graph structures to enhance 

understanding and retrieval. This approach is exemplified by techniques such as RAG and its 

extension, GraphRAG.

RAG is a framework that combines the strengths of traditional information retrieval systems 

with the generative capabilities of LLMs. In this setup, an LLM is augmented with a retrieval  

component that fetches relevant information from external data sources, such as knowledge 

bases or databases, to produce more accurate and contextually relevant responses. This method 

enhances the LLM’s output by grounding it in authoritative, up-to-date information.

GraphRAG builds upon the RAG framework by incorporating KG into the retrieval process. In this 

approach, the retrieval component utilizes a knowledge graph—a structured representation of 

entities and their relationships—to provide contextually relevant information to the LLM. This 

integration allows for a richer understanding of complex data by combining text extraction, net-

work analysis, and LLM prompting into a cohesive system.
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By acting as an aligner, the LLM effectively bridges the gap between unstructured textual data 

and structured graph representations, facilitating more comprehensive data analysis and retriev-

al. This alignment enhances the LLM’s ability to generate responses that are both contextually 

relevant and grounded in structured knowledge, leading to improved performance in tasks such 

as question answering, recommendation systems, and data summarization.

In recent years, several tools have risen for GraphRAG. Here, we will be using Neo4j and LangChain 

to achieve a fully local, efficient GraphRAG.

First of all, we need to start our Neo4j server. It will act as a backend for storing the KG and  

performing the RAG operations. As you can read in Chapter 10, Building a Data-Driven Graph- 

Powered Application, Neo4j is one of the most common graph databases, which can scale to fairly 

large datasets and can be distributed over multiple nodes.

Similarly to Chapter 10, Building a Data-Driven GraphPowered Application, we can locally deploy 

a Neo4j server instance using Docker. However, since here we need the apoc plugins, we need to 

feed to the docker commands some extra environment variables with respect to the command 

seen in the previous chapter:

docker run --rm --detach --name neo4j \

              --publish=7474:7474 --publish=7687:7687 \

              --env NEO4J_AUTH=neo4j/defaultpass \

              --env NEO4J_PLUGINS='["apoc-extended"]' \

              --env NEO4J_apoc_export_file_enabled=true \

              --env NEO4J_apoc_import_file_enabled=true \

              --env NEO4J_apoc_import_file_use__neo4j_config=true \

              neo4j:5.26.0

It’s now time to implement our GraphRAG system! First of all, let’s connect to Neo4j (this part 

can be adapted if you are using a different edition):

from neo4j import GraphDatabase

from langchain_neo4j import Neo4jGraph

NEO4J_URI = "bolt://localhost:7687"

NEO4J_USER = "neo4j"

NEO4J_PASSWORD = "your_password"

driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USER, NEO4J_PASSWORD))

graph = Neo4jGraph(url=NEO4J_URI, username=NEO4J_USER, password=NEO4J_
PASSWORD)
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Once we have our graph connection instance, we can store the KG created above in Neo4j, as 

follows:

graph.add_graph_documents(graph_documents)

At this point, our extracted KG is stored in Neo4j and ready for querying. You can visualize it in 

your browser at localhost:7474, and it should look as follows:

Figure 12.4: Visualization of extracted KG in Neo4j

Our GraphRAG method is fairly simple: we provide an LLM with our KG and a textual query, and 

we ask it to generate a Cypher query representing the textual query. Then, Neo4j performs the 

query and provides the LLM with the extracted results. Finally, the LLM uses this information 

to generate an answer.

To help the LLM generate a correct query, we first define a Cypher template to guide query  

generation:

CYPHER_GENERATION_TEMPLATE = """You are a Neo4j expert. Generate a Cypher 
query to answer the given question.

Database Schema:

- Nodes:

  * Person (properties: id)

  * Award (properties: id)

- Relationships:

  * (Person)-[:MARRIED_TO]-(Person)
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  * (Person)-[:WON_NOBEL_PRIZE]->(Award)

Rules:

1. Always use explicit `MATCH` for relationships.

2. Never use `WHERE` for relationship matching.

3. Use `RETURN DISTINCT` when appropriate.

Example Queries:

1. Question: "Who won the Nobel Prize?"

   Cypher: MATCH (p:Person)-[:WON_NOBEL_PRIZE]->(:Award) RETURN p.id AS 
winner

Question: {query}

Return only the Cypher query without any explanation or additional text.

Cypher:"""

Let’s use the GraphCypherQAChain object in LangChain. This object passes context to the Q&A 

prompt in the _call method. It retrieves the results from the graph database using the generated 

Cypher query and passes these results as the context to the LLM. The LLM then uses this context 

along with the question to generate an answer:

from langchain_neo4j import GraphCypherQAChain

from langchain_core.prompts import PromptTemplate

chain = GraphCypherQAChain.from_llm(

    llm=llm,

    graph=graph,

    verbose=True,

    cypher_prompt=PromptTemplate(

        input_variables=["query"],

        template=CYPHER_GENERATION_TEMPLATE

    ),

    allow_dangerous_requests=True

)
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Let’s ask something simple but not trivial, for example, “Who married a Nobel Prize winner?”:

question = "Who married a Nobel Prize winner?"

print(f"\nQuestion: {question}")

response = chain.invoke(question)

print("Response:", response['result'])

# Close the driver

driver.close()

The output should be as follows:

Response: Pierre Curie married a Nobel Prize winner.

The answer is correct! Note that, to answer the question, the engine had to build a specific Cypher 

query that looks like the following:

MATCH (p1:Person)-[:MARRIED_TO]-(p2:Person)-[:WON_NOBEL_PRIZE]->(:Award) 
RETURN p1.id AS winner

Therefore, the LLM received grounded information to prepare the answer, which makes the 

response more trustable compared to a pure generative method. However, while this method 

effectively retrieves structured data, alternative approaches (such as embedding-based retrieval) 

could further enhance results. GraphRAG can be implemented in multiple ways:

•	 Cypher Query-Based Retrieval (our approach): Uses an LLM to translate queries into 

Cypher queries, which fetch structured data from a Neo4j graph

•	 Graph Embedding Retrieval: Stores knowledge graph entities as vector embeddings and 

retrieves relevant nodes using similarity search

•	 Hybrid Approach: Combines structured graph querying with embedding-based retrieval 

for greater flexibility

Neo4j and LangChain offer a well-curated and robust environment to implement and try new 

approaches, which can result in very powerful applications.

This section concludes our overview of practical examples of combining graphs with LLMs. How-

ever, in these rapidly evolving fields, it is important to stay updated on new discoveries that may 

overcome current challenges, some of which we will outline in the next section.
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Challenges and future directions
The integration of GraphML and LLMs opens up a lot of possibilities, but it also presents  

significant challenges that must be addressed for widespread adoption. One of the foremost  

concerns is scalability since dealing with large-scale graphs alongside computationally intensive 

LLMs requires expensive resources in terms of memory, processing power, and efficient data 

pipelines.

As with many other deep learning-based approaches, another major challenge is in interpretability. 

While knowledge graphs provide a structured and transparent way to store relationships, LLMs 

operate as a black box, making it difficult to understand how specific outputs are generated. For 

example, considering the presented GraphRAG approach, it is not guaranteed that the generated 

query will be semantically correct, and correcting the result is not an easy task.

Data alignment is also a key issue, as structured knowledge graphs and unstructured text data 

must be carefully preprocessed to ensure consistency. Differences in data formats, ontology 

mismatches, and information redundancy can create inefficiencies when integrating these two 

paradigms. Developing robust pipelines that seamlessly connect graph-based insights with 

LLM-generated text remains an open challenge.

By tackling these challenges, the synergy between GraphML and LLMs has the potential to bridge 

the gap between structured knowledge and flexible, natural language reasoning.

Being such a recent and rapidly evolving field, we encourage you to dive deeper into GraphML 

and LLMs. Reading scientific papers is probably the best way to stay updated. Packt has also a 

nice collection of books to further expand your knowledge. However, living in the AI era, you 

can easily find online blogs, materials, and resources to stay updated with the current trends!

Summary
This chapter has provided an introduction to combining GraphML and LLMs with practical  

examples. By leveraging the strengths of both technologies, researchers and practitioners can 

push the boundaries of what’s possible in AI-driven applications.

We have learned what LLMs are and how they can work with graphs using state-of-the-art  

techniques. We also explored the current trends and challenges in the landscape of GraphML and 

LLM integration. Finally, we saw how to start developing useful tools such as knowledge graph 

builders and GraphRAG systems.



Chapter 12 379

In the next chapter, we will turn to some recent developments and the latest research and trends 

in machine learning that have been applied to graphs. In particular, we will describe some of the 

latest techniques (such as generative neural networks) and applications (such as graph theory 

applied in neuroscience) available in the scientific literature, providing some practical examples 

and possible applications.

Further reading
There are some excellent books and papers that can help you further. Please have a look at the 

following:

•	 Applied Deep Learning on Graphs by Lakshya Khandelwal and Subhajoy Das; https://www.

amazon.com/Applied-Deep-Learning-Graphs-Architectures/dp/1835885969/ref=s
r_1_1?crid=10ETRBSQUJFUV&dib=eyJ2IjoiMSJ9.WJ7uHlfdD3FBONCaE1YNb2GqKTx1PUU
bbCBoOHHU3-Q.Z0RYDj_sTRNkealzx8eBCAszlWghNWziW0lSCOv2A6k&dib_tag=se&keywo
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Novel Trends on Graphs

In the previous chapters, we described different supervised and unsupervised algorithms 

that can be used in a wide range of problems concerning graph data structures. However, the  

scientific literature on graph machine learning is vast and constantly evolving and, every month, 

new algorithms are published. In this chapter, we will provide a high-level description of some 

new techniques and applications concerning graph machine learning.

This chapter will be divided into two main parts – advanced algorithms and applications. The 

first part is mainly devoted to describing some interesting new techniques in the graph machine 

learning domain. You will learn about some data sampling and data augmentation techniques 

for graphs based on random walk and generative neural networks. Then, you will learn about 

topological data analysis, a relatively novel tool for analyzing high-dimensional data. In the  

second part, we will provide you with some interesting applications of graph machine learning in 

different domains, ranging from biology to geometrical analysis. After reading this chapter, you 

will be aware of how looking at the relationships between data opened the door to intriguing 

novel solutions.

Specifically, we will cover the following topics in this chapter:

•	 Data augmentation for graphs

•	 Topological data analysis

•	 Applying graph theory in new domains
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Technical requirements
All code files relevant to this chapter are available at https://github.com/PacktPublishing/

Graph-Machine-Learning/tree/main/Chapter13. Please refer to the Practical exercises section of 

Chapter 1, Getting Started with Graphs, for guidance on how to set up the environment to run the 

examples in this chapter, either using Poetry, pip, or Docker.

Data augmentation for graphs
In Chapter 9, Graph Analysis for Credit Card Transactions, we described how graph machine  

learning can be used to study and automatically detect fraudulent credit card transactions. While 

describing the use case, we faced two main obstacles:

•	 There were too many nodes in the original dataset to handle. As a consequence, the  

computational cost was too high to be computed. This is why we selected only 20% of 

the dataset.

•	 From the original dataset, we saw that less than 1% of the data had been labeled as  

fraudulent transactions, while the other 99% of the dataset contained genuine  

transactions. This is why, during the edge classification task, we randomly subsampled 

the dataset.

The techniques we used to solve these two obstacles, in general, are not optimal. For graph data, 

more complex and innovative techniques are needed to solve the task. Moreover, when datasets 

are highly unbalanced, as we mentioned in Chapter 9, Graph Analysis for Credit Card Transactions, 

we can solve this using anomaly detection algorithms.

In this section, we will provide a description of some techniques and algorithms we can use to 

solve the aforementioned problems. We will start by describing the graph sampling problem, 

and we will finish by describing some graph data augmentation techniques. We will share some 

useful references and Python libraries for both of these topics.

Sampling strategies
In Chapter 9, Graph Analysis for Credit Card Transactions, to perform the edge classification task, we 

started our analysis by sampling only 20% of the whole dataset. Unfortunately, this strategy, in 

general, is not optimal. Indeed, the subset of nodes selected with this simple strategy may form 

a subgraph that does not accurately represent the overall topology of the graph. Due to this, we 

need to define a strategy for building a subgraph of a given graph by sampling the right nodes. 

The process of building a (small) subgraph from a given (large) graph by minimizing the loss of 

topological information is known as graph sampling.

https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter13
https://github.com/PacktPublishing/Graph-Machine-Learning/tree/main/Chapter13
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A good starting point so that we have a full overview of the graph sampling algorithm is  

available in the Little Ball of Fur: A Python Library for Graph Sampling paper, which can be  

downloaded from https://arxiv.org/pdf/2006.04311.pdf. The Python  

implementation of using the networkx library is available at the following URL: https://

github.com/benedekrozemberczki/littleballoffur. The algorithms that are available in 

this library can be divided into node and edge sampling algorithms. These algorithms sample 

the nodes and edges in the graph bundling, respectively. As a result, we get a node- or  

edge-induced subgraph from the original graph. We will leave you to perform the analysis 

proposed in Chapter 9, Graph Analysis for Credit Card Transactions, using the different graph 

sampling strategies available in the littleballoffur Python package.

Exploring data augmentation techniques
Data augmentation is a common technique when we’re dealing with unbalanced data. In  

unbalanced problems, we usually have labeled data from two or more classes. Only a few samples 

are available for one or more classes in the dataset. A class that contains a few samples is also 

known as a minority class, while a class that contains a large number of samples is known as a 

majority class. For instance, in the use case described in Chapter 9, Graph Analysis for Credit Card 

Transactions, we had a clear example of an unbalanced dataset. In the input dataset, only 1% of all 

the available transactions were marked as fraudulent (the minority class), while the other 99% 

were genuine transactions (the majority class). When dealing with classical datasets, the problem 

is usually solved using random down- or up-sampling or using data generation algorithms such 

as SMOTE. However, for graph data, this process may not be as easy since generating new nodes 

or graphs is not a straightforward process. This is due to the presence of complex topological 

relations. In the last decade, a large range of data augmentation graph algorithms have been 

made. Here, we will introduce two of the latest available algorithms, namely GAug and GRAN.

The GAug algorithm is a node-based data augmentation algorithm. It is described in the  

paper Data Augmentation for Graph Neural Networks, which is available at https://arxiv.org/

pdf/2006.06830.pdf. The Python code for this library is available at https://github.com/zhao-

tong/GAug. This algorithm can be useful for use cases where edge or node classification is needed, 

as in the use case provided in Chapter 9, Graph Analysis for Credit Card Transactions, where the 

nodes belonging to the minority class can be augmented using the algorithm. As an exercise, 

you can extend the analysis we proposed in Chapter 9, Graph Analysis for Credit Card Transactions, 

using the GAug algorithm.

https://arxiv.org/pdf/2006.04311.pdf
https://github.com/benedekrozemberczki/littleballoffur
https://github.com/benedekrozemberczki/littleballoffur
https://arxiv.org/pdf/2006.06830.pdf
https://arxiv.org/pdf/2006.06830.pdf
https://github.com/zhao-tong/GAug
https://github.com/zhao-tong/GAug
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The GRAN algorithm is a graph-based data augmentation algorithm. It is described in the Efficient 

Graph Generation with Graph Recurrent Attention Networks paper, which is available at https://

arxiv.org/pdf/1910.00760.pdf. The Python code for the library is available at https://github.

com/lrjconan/GRAN. This algorithm is useful for generating new graphs when we’re dealing with 

graph classification/clustering problems. For example, if we’re dealing with an unbalanced graph 

classification problem, it could be useful to create a balance step for the dataset using the GRAN 

algorithm and then perform the classification task.

More graph sampling and data augmentation techniques have been developed in recent years, 

and here we have provided a brief introduction to help you explore this rapidly evolving and 

fascinating field.

In the next section, we will introduce a novel approach—a new technique for learning about and 

analyzing graph features, rooted in topological data analysis.

Learning about topological data analysis
Topological Data Analysis (TDA) is a rather novel technique that’s used to extract features that 

quantify the shape of the data. The idea of this approach is that by observing how data points are 

organized in a certain space, we can reveal some important information about the process that 

generated it.

The main tool for applying TDA is persistent homology. The math behind this method is quite 

advanced, so let’s introduce this concept through an example. Suppose you have a set of data 

points distributed in a space, and let’s suppose you are “observing” them over time. Points are 

static (they do not move across the space); thus, you will observe those independent points forever. 

However, let’s imagine we can create associations between these data points by connecting them 

together through some well-defined rules. In particular, let’s imagine a sphere expanding from 

these points through time. Each point will have its own expanding sphere and, once two spheres 

collide, an “edge” can be placed by these two points. This is exemplified in the following diagram:

Figure 13.1: Example of how relationships between points can be created

https://arxiv.org/pdf/1910.00760.pdf
https://arxiv.org/pdf/1910.00760.pdf
https://github.com/lrjconan/GRAN
https://github.com/lrjconan/GRAN
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The more spheres that collide, the more associations will be created, and the more edges will be 

placed. This happens when multiple spheres intersect more complex geometrical structures such 

as triangles, tetrahedrons, and so on appear:

Figure 13.2: Example of how connections among points generate geometrical structures

When a new geometrical structure appears, we can note its birth time. On the other hand, when 

an existing geometrical structure disappears (for example, it becomes part of a more complex 

geometrical structure), we can note its death time. The survival time (time between birth and 

death) of each geometrical structure that’s observed during the simulation can be used as a new 

feature for analyzing the original dataset.

We can also define the so-called persistent diagram by placing each structure’s corresponding pair 

(birth, death) on a two-axis system. Points closer to the diagonal normally reflect noise, whereas 

points distant from the diagonal represent persisting features. An example of a persistence diagram 

is as follows. Notice that we described the whole process by using expanding spheres as an example. 

In practice, we can change the dimension of this expanding shape (for instance, using 2D circles), 

thus producing a set of features for each dimension (commonly indicated using the letter H):

Figure 13.3: Example of a 2D point cloud (right) and its corresponding persistence diagram (left)
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A good Python library for performing topological data analysis is giotto-tda, which is available 

at https://github.com/giotto-ai/giotto-tda. Using the giotto-tda library, it is easy to build 

the simplicial complex and its relative persistence diagram, as shown in the preceding figure.

Topological machine learning
Now that we know the fundamentals behind TDA, let’s see how it can be used for machine learning. 

By providing machine learning algorithms with topological data (such as persistent features), we 

can capture patterns that might be missed by other traditional approaches.

In the previous section, we saw that persistence diagrams are useful for describing data.  

Nevertheless, using them to feed machine learning algorithms (such as RandomForest) is not 

a good choice. For instance, different persistent diagrams may have different numbers of points, 

and basic algebraic operations would not be well defined.

One common way to overcome such a limitation is to transform diagrams into more suitable  

representations. Embeddings or kernel methods can be used to obtain a vectorized  

representation of the diagrams. Moreover, advanced representation methods such as  

persistence images, persistence landscapes, and Betti curves, among others, have been shown 

to be very useful in practical applications such as shape analysis, biomolecular structure  

prediction, network science, material science, and machine learning for graph-based data.  

Persistent images (Figure 13.4), for instance, are bi-dimensional representations of persistence 

diagrams that can easily be fed into convolutional neural networks. An example of a persistent 

image is shown here:

Figure 13.4: Example of a persistent image

Several possibilities arise out of this theory, and there is still a connection between the findings and 

deep learning. Several new ideas are being proposed, making the subject both hot and fascinating.

https://github.com/giotto-ai/giotto-tda
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Topological data analysis is a rapidly growing field, especially since it can be combined with 

machine learning techniques. Several scientific papers are published on this topic every year and 

we expect novel exciting applications in the near future.

In this book, we have explored several examples of how graph machine learning can help solve 

practical problems. In the next section, we will provide an overview of its applications, aiming to 

expand your perspective on how the world can be understood through nodes and links!

Applying graph theory in new domains
In recent years, due to there being a more solid theoretical understanding of graph machine  

learning, as well as an increase in available storage space and computational power, we can identify 

a number of domains in which such learning theories are spreading. With a bit of imagination, 

you can start looking at the surrounding world as a set of nodes and links. Our work or study place, 

the technological devices we use every day, and even our brains can be represented as networks.

In this section, we will look at some examples of how graph theory (and graph machine learning) 

has been applied to, apparently, unrelated domains.

Graph machine learning and neuroscience
The study of the brain by means of graph theory is a prosperous and expanding field. Several 

ways of representing the brain as a network have been investigated, with the aim of understanding 

how different parts of the brain (nodes) are functionally or structurally connected to each other.

By means of medical techniques such as Magnetic Resonance Imaging (MRI), a  

three-dimensional representation of the brain can be obtained. Such an image can be processed 

by different kinds of algorithms to obtain distinct partitions of the brain (parcellation).

There are different ways in which we can define connections between those regions, depending 

on whether we are interested in analyzing their functional or structural connectivity:

•	 Functional Magnetic Resonance Imaging (fMRI) is a technique that’s used to  

measure whether a part of the brain is “active” or not. Specifically, it measures the  

blood-oxygen-level-dependent (BOLD) signal of each region (a signal indicating the 

variation of the level of blood and oxygen at a certain time). Then, the Pearson correlation 

between the BOLD series of two brain regions of interest can be computed. High correlation 

means that the two parts are “functionally connected,” and an edge can be placed between 

them. An interesting paper on graphically analyzing fMRI data is Graph-based network 

analysis of resting-state functional MRI, which is available at https://www.frontiersin.

org/articles/10.3389/fnsys.2010.00016/full.

https://www.frontiersin.org/articles/10.3389/fnsys.2010.00016/full
https://www.frontiersin.org/articles/10.3389/fnsys.2010.00016/full
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•	 On the other hand, by using advanced MRI techniques such as Diffusion Tensor  

Imaging (DTI), we can also measure the strength of the white matter fiber bundles  

physically connecting two brain regions of interest. Thus, we can obtain a graph  

representing the structural connectivity of the brain. A paper where graphs neural  

networks are used in combination with graphs generated from DTI data is called Multiple 

Sclerosis Clinical Profiles via Graph Convolutional Neural Networks and is available at https://

www.frontiersin.org/articles/10.3389/fnins.2019.00594/full.

•	 Functional and structural connectivity can be analyzed using graph theory. There 

are several studies that enhance significant alterations of such networks related to  

neurodegenerative diseases, such as Alzheimer’s, multiple sclerosis, and Parkinson’s, 

among others.

The final result is a graph describing the connection between the different brain regions, as shown 

here:

Figure 13.5: Connections between brain regions as a graph

Here, we can see how different brain regions can be seen as nodes of a graph, while the  

connections between those regions are edges.

Graph machine learning has been shown to be very useful for this kind of analysis. Different 

studies have been conducted to automatically diagnose a particular pathology based on the 

brain network, thus predicting the evolution of the network (for example, identifying potentially 

vulnerable regions that are likely to be affected by the pathology in the future).

Network neuroscience is a promising field, and, in the future, more and more insight will be 

collected from those networks so that we can understand pathological alterations and predict 

a disease’s evolution.

https://www.frontiersin.org/articles/10.3389/fnins.2019.00594/full
https://www.frontiersin.org/articles/10.3389/fnins.2019.00594/full


Chapter 13 389

Graph theory and chemistry and biology
Graph machine learning can be applied to chemistry. For example, graphs provide a natural 

method for describing molecular structures by treating atoms as the nodes of a graph and bonds 

as their connections. Such methods have been used to investigate different aspects of chemical 

systems, including representing reactions, and learning chemical fingerprints (indicating the 

presence or absence of chemical features or substructures), among others.

Several applications can also be found in biology, where many different elements can be  

represented as a graph. Protein-protein interactions (PPI), for example, is one of the most widely 

studied topics. Here, a graph is constructed, where nodes represent protein and edges represent 

their interaction. Such a method allows us to exploit the structural information of PPI networks, 

which has proved to be informative in PPI prediction.

Graph machine learning and computer vision
The rise of deep learning, especially convolutional neural network (CNN) techniques, has 

achieved amazing results in computer vision research. For a wide range of tasks, such as image 

classification, object detection, and semantic segmentation, CNNs can be considered the state 

of the art. However, recently, central challenges in computer vision have started to be addressed 

using graph machine learning techniques – geometric deep learning in particular. As we have 

learned throughout this book, there are fundamental differences between the 2D Euclidean  

domain in which images are represented and more complex objects such as 3D shapes and point 

clouds. Restoring the world’s 3D geometry from 2D and 3D visual data, scene understanding, 

stereo matching, and depth estimation are only a few examples of what can be done. Let’s see 

some tasks in the next sections.

Image classification and scene understanding
Image classification, one of the most widely studied tasks in computer vision, nowadays  

dominated by CNN-based algorithms, has started to be addressed from a different perspective. 

Graph neural network models have shown attractive results, especially when huge amounts 

of labeled data are not available. In particular, there is a trend in combining these models with 

zero-shot and few-shot learning techniques. Here, the goal is to classify classes that the model has 

never seen during training. For instance, this can be achieved by exploiting the knowledge of how 

the unseen object is semantically related to the seen ones.



Novel Trends on Graphs390

Similar approaches have also been used for scene understanding. Using a relational graph between 

detected objects in a scene provides an interpretable structured representation of the image. This 

can be used to support high-level reasoning for various tasks, including captioning and visual 

question answering, among others.

Shape analysis
In contrast with images, which are represented by a bi-dimensional grid of pixels, there are 

several methods for representing 3D shapes, such as multi-view images, depth maps, voxels, point 

clouds, meshes, and implicit surfaces, among others. Nevertheless, when applying machine and deep 

learning algorithms, such representations can be exploited to learn specific geometric features, 

which can be useful for designing a better analysis.

In this context, geometric deep learning techniques have shown promising results. For instance, 

GNN techniques have been successfully used to find correspondence between deformable shapes, 

a classical problem that leads to several applications, including texture animation and mapping, 

as well as scene understanding.

For those of you who are interested, some good resources to help you understand this  

application of graph machine learning are available at https://arxiv.org/pdf/1611.08097.

pdf and http://geometricdeeplearning.com/.

Recommendation systems
Another interesting application of graph machine learning is in recommendation systems, which 

we can use to predict the rating or the preference that a user would assign to an item. In Chapter 

7, Social Network Graphs, we provided an example of how link prediction can be used to build 

automatic algorithms that provide recommendations to a given user and/or customer. In the 

paper Graph Neural Networks in Recommender Systems: A Survey, available at https://arxiv.org/

pdf/2011.02260.pdf, the authors provide an extensive survey of graph machine learning that’s 

been used to build recommendation systems. More specifically, the authors describe different 

graph machine learning algorithms and their applications.

Graph machine learning and NLP
Graph machine learning has become increasingly relevant in natural language processing (NLP) 

as it enables the modeling of complex relationships between entities, concepts, or words in a 

structured manner. One common application is the use of knowledge graphs to represent semantic 

relationships, where nodes represent entities or concepts, and edges capture the interactions or 

relationships between them. 

https://arxiv.org/pdf/1611.08097.pdf
https://arxiv.org/pdf/1611.08097.pdf
http://geometricdeeplearning.com/
https://arxiv.org/pdf/2011.02260.pdf
https://arxiv.org/pdf/2011.02260.pdf
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These knowledge graphs can be used in tasks such as question answering, where the model learns 

to reason over the graph to provide accurate answers based on the relationships between entities, 

similar to what we did in Chapter 8, Text Analytics and Natural Language Processing Using Graphs.

Another trend in NLP is the representation of text as graphs. For instance, words in a  

document can be treated as nodes, and their relationships (such as syntactic dependencies or  

semantic proximity) can form the edges. Graph neural networks can be applied to these graphs 

to capture higher-order dependencies that traditional sequence models might miss, improving 

performance on tasks such as document classification, sentiment analysis, or summarization.  

Graph-based approaches can model not just word-to-word relations, but also long-range dependencies  

between distant words, offering a more robust understanding of text.

In addition to these structural applications, as we have seen in the previous chapters, large  

language models (LLMs) are also benefiting from graph-based methods. Retrieval- 

augmented generation (RAG) is an exciting development where LLMs retrieve information from 

an external knowledge base, often structured as a graph, to enhance their responses. In RAG, 

the model can first query a knowledge graph to retrieve relevant information and then use this  

knowledge to generate more accurate and contextually relevant outputs. This is particularly useful 

in tasks requiring factual accuracy, such as summarizing or generating responses in open-domain  

question-answering systems.

By integrating graph-based techniques with LLMs, it becomes possible to leverage external  

knowledge for more reliable and interpretable text generation, thus advancing the field of NLP 

in areas such as knowledge-based QA, dialogue systems, and even semantic search.

Summary
In this chapter, we provided a high-level overview of some emerging graph machine  

learning algorithms and their applications for new domains. At the beginning of the chapter, we  

described, using the example provided in Chapter 9, Graph Analysis for Credit Card Transactions, some  

sampling and augmentation algorithms for graph data. We provided some Python libraries that 

can be used to deal with graph sampling and graph data augmentation tasks.

We continued by providing a general description of topological data analysis and how this  

technique has recently been used in different domains.

Finally, we provided several descriptions of new application domains, such as neuroscience,  

chemistry, and biology. We also described how machine learning algorithms can also be used 

to solve other tasks, such as image classification, shape analysis, and recommendation systems.
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This is it! In this book, we provided an overview of the most important graph machine learning 

techniques and algorithms. You should now be able to deal with graph data and build machine 

learning algorithms. We hope that you are now in possession of more tools in your toolkit and 

that you will use them to develop exciting applications. We also invite you to check the references 

we provided in this book and to address the challenges we proposed in the different chapters.

The world of graph machine learning is fascinating and rapidly evolving. New research papers 

are published every day with incredible findings. As usual, a continuous review of the scientific 

literature is the best way to discover new algorithms, and arXiv (https://arxiv.org/) is the best 

place to search for freely available scientific papers.

https://arxiv.org/
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